
1

Java Programming in a Multicore World

Angelika Langer
Trainer/Consultant

http://www.AngelikaLanger.com

2© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
2

objective
• take look at current trends in concurrent

programming
• explain the Java Memory Model
• discuss future trends such as lock-free programming

and transactional memory

2

3© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
3

speaker's relationship to topic
• independent trainer / consultant / author

- teaching C++ and Java for 10+ years
- curriculum of a dozen challenging courses
- co-author of "Effective Java" column
- author of Java Generics FAQ online
- Java champion since 2005

4© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
4

agenda
• concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

3

5© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
5

CPU development
• Moore’s law:

number of transistors doubles every two years
- since 2004: more cores
- until 2004: faster ones
- main reason: heat

• 2 cores became
standard 2007
- 6-12 in 2009 (AMD)

• more complex caches
- hierarchy

6© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
6

CPU development implies
• new CPU will not solve your performance problems

- if your program does not scale (well) to multiple cores
- i.e.: find (and fight) the serialization

• existing programs
- undetected errors might pop up
- multi-core + caching uncovers synchronization problems

• Java environment
- more and more complex work for

- the byte code compiler, and
- the JIT compiler

4

7© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
7

Java history – initial MT support
• mostly built into the language (not into the library)

- synchronized block/method – lock in every object
- Object.wait(), Object.notify() – condition in every object
- ...

• mainly low level functionality
- no thread pool, no blocking queue, …

• memory model
- chapter 17 of the Java Language Specification: Threads and Locks

- hard to understand,
- incomplete,
- violated by JVM implementations

8© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
8

Java history – JDK 5.0 MT support
• rework of existing locks and conditions

- into the library: java.util.concurrent.locks

- extended functionality
- timeout for existing locks
- new locks: read-write-lock

- approach changed: library is more flexible than language
- think of C

• high-level abstractions
- thread pool: ThreadPoolExecuter, …
- synchronizers: BlockingQueue, CyclicBarrier, …
- support for asynchronous programming: Future, …

5

9© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
9

(cont.)
• support for lock free programming

- low-level
- abstractions from java.util.concurrent.atomic

- high-level
- ‘concurrent’ collections: ConcurrentHashMap, …

• reworked memory model
- cleared up what volatile and final mean in a MT

context
- defines requirements regarding atomicity, visibility and

ordering of operations

10© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
10

Java keeps up to …
• … the needs and requirements of the changing MT uses

• more people build MT programs
- MT patterns and idioms become common knowledge
- need for high-level abstractions

• more people build Java MT programs
for multiprocessor platforms

- need for clear and exact memory model
- wish for better scaling MT abstractions

- need for lock free programming

• former niche becomes main stream with multi core CPUs

6

11© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
11

system architecture - current trends
• trend to asynchronous and parallel computing

to increase throughput

• Java examples
- asynchronous I/O

- 1.4 socket, 5.0 sockets + SSL, 7.0 sockets + file system
- essential: frees you from one thread per socket
- but: program structure gets more complex and technical

- JMS introduced 2001
- much later than RMI which was part of Java from the beginning
- effect: EJB became message-driven beans

12© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
12

current trends
• example: AJAX (Asynchronous JavaScript and XML)

- means: decouple user interaction from HTTP requests
- traditionally:

- you select a link / push a button / etc. , and
- a new page gets loaded into your browser

- AJAX example: Google Maps

user interaction

e.g. pull the map
to the left

map elements are
asynchronously
pulled from the server
via Javascript

7

13© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
13

more AJAX
• more asynchronicity: HTTP push via Ajax

- signal an asynchronous event in the browser
- e.g. incoming telephone call

• solutions boil down to a ‘long-lived’ HTTP request
- persistent communication / long polling / hybrid polling:

- request lives, until the event occurs or ‘long’ timeout occurs (5-10min)
- event (or timeout) is signaled in the response
- new request to poll the next event

- comet style / HTTP streaming:
- request lives, until the client goes away
- all data is send from the server to the client in the same response

14© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
14

a small problem …
• traditional servlet programming

- one thread:
- receives HTTP request
- determines what has to be done
- gathers the data (and renders the new page)
- sends all this back to the client in a response

• what about an long-lived open HTTP request ?
- that waits for an external event,

- e.g. the incoming telephone call

• allocates a thread until
the event occurs / client goes away !

- with 50000 users on the server ?!?!?

8

15© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
15

asynchronous web servers
• decouple the request from the response

• Jetty 6 Continuation
- Continuation.suspend(), Continuation.resume()
- http://docs.codehaus.org/display/JETTY/Continuations

• Tomcat 6.0 Comet
- Comet module allows to process I/O asynchronously
- http://tomcat.apache.org/tomcat-6.0-doc/aio.html

• Java standard for asynchronous web server
- JSR 315 = Servlet 3.0 specification
- scheduled finish by the end of 2008

• underlying concept: asynchronous I/O

16© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
16

more and more asynchronicity
• not only web server – other servers too

• SOA (service oriented architecture)
- service -> service -> service …
- you don’t want to have a waiting thread in each of the server
- i.e.

- asynchronous handling of the request
- MOM (message oriented middleware), means often JMS in Java

• bottom line:
- you need multiple threads and some synchronization of these

to tie the external asynchronous channels to your program

9

17© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
17

agenda
• concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

18© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
18

motivation - why does JMM matter?
• JMM = Java Memory Model

• understanding JMM reveals errors in existing
programs
- undetected errors might pop up
- multi-core + caching uncovers synchronization problems

10

19© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
19

Java Memory Model (JMM)
• specifies minimal guarantees given by the JVM

- about when writes to variables become visible to other threads

• is an abstraction on top of hardware memory models

Java Memory Model
• threads read and write to variables

Hardware Memory Model
• processors read and write to caches,

registers, main memory

20© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
20

Java memory model
• JMM resembles abstract SMP (symmetric multi processing)

machine

• key ideas:
- all threads share the main memory
- each thread uses a local working memory
- flushing or refreshing working memory to/from main memory

must comply to JMM rules

CPU

cache

CPU

cache

main memory

bus

11

21© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
21

Java memory model
JMM rules address 3 intertwined issues:

• atomicity
- which operations must have indivisible effects ?

• visibility
- under which conditions are the effects of operations taken by one

thread visible to other threads ?
• ordering

- under which conditions can the effects of operations appear out
of order to any given thread ?

"operations" means:
- reads and writes to memory cells representing Java variables

22© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
22

JMM in practice
• examples:

atomicity
- access to variables of primitive type (except long/double) are atomic
- execution of operations in a synchronized block is atomic
visibility
- values written to a volatile variable are visible to other threads
ordering
- effects of operations in a synchronized block appear in order
- accesses to volatile variables appear in order

12

23© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
23

sequential consistency
• sequential consistency is a convenient (yet

unrealistic) mental model:
- imagine a single order of execution of all programm

operations (regardless of the processors used)
- each read of a variable will see the last write in the

execution order

• JMM does NOT guarantee sequential consistency
- reordering is generally permitted
- specific rules for synchronization, thread begin/end, volatile

and final variables

24© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
24

agenda
• concurrency trends
• synchronization and memory model

- atomicity
- visibility
- ordering

• fight the serialization – improve scalability
• future trends

13

25© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
25

need for visibility

• access to cnt is atomic
- no synchronization in size() needed

• visibility problem
- writes performed in one thread need not be visible to other threads
- i.e. modification of cnt in push()/pop() need not be visible to size()

• volatile is needed not for atomicity, but for visibility

private int[] array;
private int cnt = 0;
...
public synchronized void push(int elm) { array[cnt++] = elm; }
public synchronized int pop() { return(array[--cnt]); }
public int size() { return cnt; }
...

must be volatile

26© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
26

visibility guarantees
• changes made in one thread are guaranteed to be visible to

other threads under the following conditions:

- explicit synchronization
- thread start and termination
- read / write of volatiles
- first read of finals

14

27© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
27

visibility guarantee: read / write of volatiles
• reading a volatile forces a reload from main memory
• writing to a volatile forces a flush to main memory

• matches our expectation
- when a thread reads a volatile, then all writes are visible

that any other thread performed prior to a write to the same
volatile

• how about volatile references ... ?

• volatile is not transitive
- read/write of a volatile reference affects the reference, but not the

referenced object (or array)

28© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
28

volatile (since Java 5) - example

int answer = 0;
volatile boolean ready = false;

answer = 42;
ready = true;

Thread 1

if (ready)
print(answer);

Thread 2

Thread 0

must not print 0

not volatile

modified before
write to volatile

15

29© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
29

non-transitive volatile - example

volatile Name name = null;

name = new Name();
name.setFirst("Eva");
name.setLast("Schulz");

Thread 1

if (name != null)
print(name);

Thread 2

Thread 0

might see empty object

reference modified before
write to fields

30© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
30

volatile references
• what do we do to also make the modified object visible?

- make all fields of referenced object volatile
- problem for arrays: array elements cannot be declared volatile

- modify elements before assignment to volatile reference
- all changes made prior to writing to the volatile are flushed

- use explicit synchronization
- viable fallback, at the expense of synchronization overhead

16

31© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
31

final vs. volatile vs. sychronization
• explicit synchronization is expensive
• volatile is cheaper but still relatively expensive

- due to the need of memory barriers
• final is even cheaper

- memory barrier is needed only once (after construction)

32© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
32

agenda
• concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

17

33© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
33

Amdahl’s law
• named after computer architect Gene Amdahl

- "Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities", AFIPS Conference
Proceedings, (30), pp. 483-485, 1967.

- Gene Amdahl has approved the use of his complete text in
the Usenet comp.sys.super news group FAQ which goes
out on the 20th of each month

• used in parallel computing to predict the theoretical
maximum speedup using multiple processors

34© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
34

(cont.)
• idea: divide work into serial and parallel portions

- serial work cannot be sped up by adding resources
- parallelizable work can

• Amdahl’s Law: speedup ≤

- F is the fraction that must be serialized
- N is the number of CPUs

• with N -> ∞, speedup -> 1/F
- with 50% serialization,

- your program can only speed up by a factor of 2 (with: ∞ CPUs)

• naïve idea: from 1 to 2 CPUs = factor of 2 ?

N

1

F +
(1 – F))(

18

35© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
35

(cont.)
• fight serialization to improve performance

36© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
36

example

• looks highly parallelizable
- (if producers are slow increase their thread pool)

• 0% serialized ?
- no!

- need synchronization to maintain the queue’s integrity

producer consumer

LinkedBlockingQueue

19

37© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
37

LinkedBlockingQueue.offer()
public boolean offer(E o) {

if (o == null) throw new NullPointerException();
final AtomicInteger count = this.count;
if (count.get() == capacity)

return false;
int c = -1;
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {

if (count.get() < capacity) {
insert(o);
c = count.getAndIncrement();
if (c + 1 < capacity)

notFull.signal();
}

} finally {
putLock.unlock();

}
if (c == 0)

signalNotEmpty();
return c >= 0;

}

38© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
38

(cont.)
• Doug Lea did an excellent job with the

implementation
- highly optimized

- split lock: put / take
- count guarded lock-free
- stack-local variables to speed up the execution inside the

critical region
- …

• structural problem
- serialization of offering threads (producers)
- similar serialization of getting threads (consumers)

20

39© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
39

serialization
• where/when threads demand concurrent access

• often hidden
- in frameworks / third party abstractions

• other area: asynchronous service architecture
- example: java.nio.channels.Selector

- section on concurrency in the respective JavaDoc
- management to send back the result asynchronously

- Jetty continuation

40© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
40

fight the serialization …
… try to reduce lock induced serialization

• smallest critical region possible
- synchronized block vs. synchronized method

- or use explicit locks
- speed up execution inside the critical region
- replace synchronized counters with AtomicInteger

• lock splitting / striping
- guard different state with different locks
- reduces likelihood of lock contention

21

41© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
41

fight the serialization …
… try to eliminate locking entirely

• replace mutable objects with immutable ones
• replace shared objects with thread-local ones

- e.g. make a copy before passing it to a concurrent thread

• lock-free programming

42© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
42

agenda
• history of concurrency & concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

22

43© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
43

trends
• lock-free programming

- supported in Java since JDK 5.0
- java.util.concurrent.atomic, and
- Concurrent collections in java.util.concurrent

• transactional memory
- neither supported in Java nor in any popular programming

language at the moment

• commonality
- avoid locking to avoid serialization

44© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
44

agenda
• history of concurrency & concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

- lock free programming
- transactional memory

23

45© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
45

CAS
• modern processors have a primitive called CAS (compare-

and-swap)
• a CAS operation includes three operands

- a memory location
- the expected old value
- a new value

• processor will atomically update the location to the new value
- if the value that is there matches the expected old value
- otherwise it will do nothing
- it returns the value that was at that location prior to the CAS

instruction

46© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
46

CAS permits atomic read-modify-write

• CAS allows an algorithm to execute a read-modify-write
sequence
- without fear of another thread modifying variable in meantime
- if another thread did modify variable, CAS would detect it (and

fail)
- and algorithm could retry operation

• CAS-like operation are available in JDK 5.0 as "atomic
variables“
- based on the underlying system/hardware/CPU support
- java.util.concurrent.atomic

24

47© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
47

example - thread-safe counter

• increment() / decrement() are read-modify-write
operations and must be atomic
- atomic read-modify-write cannot be achieved by making

instance variable volatile
- need to be synchronized

• get() without synchronization, since value is volatile

public class SafeCounter {
private volatile int value;

public int getValue() { return value; }
public synchronized int increment() { return ++value; }
public synchronized int decrement() { return --value; }
}

48© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
48

example - thread-safe counter – lock free

public class AtomicCounter {
private AtomicInteger value;
public int getValue() { return value.get(); }
public int increment() {
int oldValue = value.get();
while (!value.compareAndSet(oldValue,

oldValue + 1))
oldValue = value.get();

return oldValue + 1;
}
public int decrement() {
int oldValue = value.get();
while (!value.compareAndSet(oldValue,

oldValue - 1))
oldValue = value.get();

return oldValue - 1;
}

}

is atomic

25

49© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
49

lock-free
• advantages

- fast (~ 4 times faster than best locks)
- deadlock immunity
- …

• disadvantages
- hard to program !!!

- no simple straight forward approach as with locks
- …

50© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
50

hard to program, but what you can do
• some strategies

- e.g. lock-free counter, ABA problem, …
- no single best resource of information known

- best to search the web for ‘lock free programming’

• algorithms for standard data structures
- map, linked list, …
- Concurrent collections from java.util.concurrent
- use these in your program

- or these in combination with locks

26

51© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
51

agenda
• history of concurrency & concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

- lock free programming
- transactional memory

52© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
52

transactional memory …
• … or software transactional memory (STM)

• similar to optimistic strategies in database transactions
- e.g. optimistic locking pattern for EJBs

• very intuitive

public void addName(String name) {
atomic {

nameCount++;
nameList.add(name);

}
}

27

53© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
53

optimistic strategy
• thread does modifications to shared memory/object

- without regards what the other threads are doing

• finished modifications
- commit

- verification that no other thread made concurrent modifications
- abort and rollback

- concurrent modifications occurred
- error handling: (in most cases) retry of the transactions

• increased concurrency vs. overhead of retrying
transactions that failed

54© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
54

evaluation
PRO
• very intuitive, e.g. update an object in shared memory

- close to the original Java approach of synchronized blocks

CON

• not every operation can be rolled back
- what about those that are not memory based ?, e.g. unbuffered I/O

• no popular programming language supports STM
- must use a more experimental language, e.g. Clojure

- dynamic language, Lisp dialect, compiles to JVM bytecode
- http://clojure.sourceforge.net/

28

55© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
55

wrap-up
• a trend towards concurrent, asynchronous computing

- MT initally for better structure
- today to overcome synchronicity (messaging, AJAX, ...)

• multicore architecture might reveal yet undetected bugs
- due to memory model issues (atomicity, visibility, ordering)

• multicore architectures need scalable software to be useful
- avoid serialization - increase concurrency - Amdahl's law

• a gaze into the crystal ball
- lock-free programming is already in use (by experts)
- transactional memory might ease concurrent programming some time in

the future

56© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
56

authors

Angelika LangerAngelika Langer
Training & Mentoring
Object-Oriented Software Development in C++ & Java
Email: contact@AngelikaLanger.com

http: www.AngelikaLanger.com

Klaus Klaus KreftKreft
Siemens Enterprise Communications Gmbh & Co. KG, Munich, Germany
Email: klaus.kreft@siemens.com

29

57© Copyright 2003-2008 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com

last update: 6/14/2008 ,11:30
57

Java Programming in a Multicore World

Q & A

