
Basel Bern Lausanne Zurich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg Munich Stuttgart Vienna

Push up your code – next generation

version control with (E)Git

Dominik Schadow

Senior Consultant

Application Development

dominik.schadow@trivadis.com

Java Forum Stuttgart, 07.07.2011

© 2011 Push up your code – next generation version control with (E)Git 2

Agenda

 Almost all about Git and EGit

 Push and pull, a typical day

with Git

 The ultimate question of

version control

© 2011 Push up your code – next generation version control with (E)Git 3

Agenda

 Almost all about Git and EGit

 Push and pull, a typical day

with Git

 The ultimate question of

version control

© 2011

Subversion and CVS have many disadvantages

Creating a branch is easy and fast

Merging is a pain (most of the time)

All branches are shared, no local (private) branches

Central repository server makes backups easy

Everybody is working against the same repository

Clients require server connection for most operations

Performance is good for certain operations

Slow merge, diff or switch operations

Slows down as the project (history) grows larger

Push up your code – next generation version control with (E)Git 4

© 2011

Git was created in the Linux community

Push up your code – next generation version control with (E)Git 5

2005 Git development starts in the Linux (kernel) community

by Linus Torvalds

2006 JGit development starts, a 100% pure Java

reimplementation of the Git version control system

2009 EGit/ JGit move to Eclipse, first projects migrate to Git

2010 (Sep) EGit/ JGit 0.9.1

2011 (Feb) EGit/ JGit 0.11.1

2011 (Jun) EGit/ JGit 1.0 with Eclipse 3.7

2012 (Jun) EGit/ JGit 2.2 with Eclipse 3.8

© 2011

JGit and EGit are official Eclipse projects

 The original Git

 Original version developed by the Linux community

 Distributed under the GNU General Public License (GPL)

 JGit is a lightweight Java library implementing Git

 JGit library can be found in many Java based products

 Plug-ins for Eclipse and NetBeans IDE, Hudson CI server,

Apache Maven, and Gerrit Code Review

 Distributed under the Eclipse Distribution License (EDL)

 EGit is the Eclipse team provider and uses JGit

 No team provider trouble as with Subversion

 Normally no command line required

 Distributed under the Eclipse Public License (EPL)

Push up your code – next generation version control with (E)Git 6

© 2011

Git is a Distributed Version Control System (DVCS)

 Git clients fully mirror the repository

 Every clone is a complete backup

 Git always clones the entire repository

 No partial checkout possible

 The whole repository is available locally

 Entire development history

 Complete repository with all branches, not only the latest snapshot

 No network connection required

 Most operations, except push/pull and fetch, work offline

 Much better performance

 No central server is required

 Local repository for private development

 Clients can directly communicate with each other

Push up your code – next generation version control with (E)Git 7

© 2011

Branching and merging is easy and fast

 Branching and merging are an essential Git concept

 Create local branch for each feature/ bug fix you work on

 You can have many feature branches at any time

 Easy to switch between them

 No mix up of changes in the same branch

 History-aware merging capability

 Auditing of branch and merge events

Push up your code – next generation version control with (E)Git 8

„In Git it‘s common to create, work on, merge, and

delete branches several times a day.“
http://progit.org/book

http://progit.org/book

© 2011

The default ‘trunk’ is called ‘master’ in Git

 All branches are local after creation

 Extremely fast, no network communication required

 Every developer’s working copy is a private branch

 Easy to share a branch (or tags) with other developers

 But most branches live only for a short time locally

 Push to share

 git push (remote) (branch)

Push up your code – next generation version control with (E)Git 9

© 2011

Store your working directory and revert

 Use git stash to record current working directory state

 Saves current state of work

 Resets working tree/ index to match latest version of current

branch (a clean workspace)

 Re-apply it at later to continue your work

Push up your code – next generation version control with (E)Git 10

© 2011

There are three main states/ sections in a Git project

Push up your code – next generation version control with (E)Git 11

Working

Tree

Staging

Index

Local

Repository

git add

git commit

 git checkout

B
a

s
e

d
 o

n

h
tt

p
:/

/p
ro

g
it
.o

rg
/b

o
o

k

modified

staged

http://progit.org/book

© 2011

Changes flow between repositories by push and pull

Push up your code – next generation version control with (E)Git 12

Working

Tree

Staging

Index

Local

Repository

git add

git commit

 git checkout

Remote

Repository

git push

 git pull

B
a

s
e

d
 o

n

h
tt

p
:/

/p
ro

g
it
.o

rg
/b

o
o

k

combines

git fetch and

git merge

all commits

from the local

branch not

available in the

remote branch
push completely

finished features

only

 git fetch

http://progit.org/book

© 2011

The index is a staging area for the next commit

 Index is changed via git add

 State of the index becomes the tree of the next commit

 Index provides an extra layer of control

 Index is like an active changeset

Push up your code – next generation version control with (E)Git 13

© 2011

Git tracks objects by their hash value

 Each blob is identified/ named by a SHA-1 hash

 Git automatically computes the hash

 Hash input is the objects content

 Tamper-proof signature as a bonus

 Blob does not contain any metadata

 Path and filename information is not considered

 A renamed file is still linked with the original version

 Sometimes problems with binary files

 Even a small change might create a whole different hash

 Relationship between new and original file might be lost

Push up your code – next generation version control with (E)Git 14

© 2011

The append-only object database

 Git stores each revision of a file as a unique blob object

 Relationships between the blobs

 Can be found through examining the tree and commit objects

 Newly added objects are stored in their entirety

 Git saves states, not deltas as Subversion

 Uses zlib compression

Push up your code – next generation version control with (E)Git 15

B
a

s
e

d
 o

n

h
tt

p
:/

/p
ro

g
it
.o

rg
/b

o
o

k

http://progit.org/book

© 2011 Push up your code – next generation version control with (E)Git 16

Agenda

 Almost all about Git and EGit

 Push and pull, a typical day

with Git

 The ultimate question of

version control

© 2011

Git command line

 Git is available for Linux, Mac OS X and Windows

 Windows command line is a little bit slower

 Clients/ command lines are in different development stages

 Generally better and tighter integration on Linux and Mac OS X

 Some initial configuration required

 Creates the .gitconfig file in your home directory

 Via command line or Eclipse preferences

Push up your code – next generation version control with (E)Git 17

© 2011

Git commands

Push up your code – next generation version control with (E)Git 18

© 2011

EGit/ JGit installation via Eclipse update site

 Git command line is not

required

 But Plug-ins do not

provide command line

interface

 Install via update site

 Eclipse EGit

 Eclipse JGit

Push up your code – next generation version control with (E)Git 19

 Before Indigo http://download.eclipse.org/egit/updates

http://download.eclipse.org/egit/updates

© 2011

EGit provides almost everything you need

Push up your code – next generation version control with (E)Git 20

© 2011

Cloning an existing repository

 Git clone automatically names the clone master

 master is based on the remote origin branch

 Creates a new directory

 Using the Git repository name as directory name

 Use optional directory parameter to specify a different name

 All its data is pulled to the local repository

 A pointer to its master is created

 Never modify the single (one and only one) .git directory

 That is the Git repository

 Exists only once in your repository root

 Files/ directories under the parent of .git are the working tree

Push up your code – next generation version control with (E)Git 21

© 2011

Initialize a new repository or clone an existing one

Push up your code – next generation version control with (E)Git 22

Git supports many different protocols:

file, ftp, git, http, https, sftp, ssh

faster, more efficient, but read-only

© 2011

Creating new branches

 Creating a new branch creates a new pointer (fast!)

 Points to the same commit currently working on

 Switch to the new branch with checkout

 Or create and switch with a single command

Push up your code – next generation version control with (E)Git 23

© 2011

Merging is trivial in Git

 Each changeset tree node

 Contains a pointer to its previous node

 Back to the first commit

 Git knows what changes need to be made

 And at what point in history they need to be applied

 Automatically merges the given branch into the active one

 Listing the merged and unmerged branches

Push up your code – next generation version control with (E)Git 24

© 2011

Switch to the branch to merge the changes in

 Use git merge and select the branch to integrate

 Fast-forward merge

 Only the other branch changed

 No merge operation required

 Three-way merge

 Both branches changed

 Don’t expect miracles, conflicts

happen: Resolve with merge tool

or manually

Push up your code – next generation version control with (E)Git 25

© 2011

Searching for Git commits

Push up your code – next generation version control with (E)Git 26

© 2011

EGit History view and the Git log

Push up your code – next generation version control with (E)Git 27

© 2011 Push up your code – next generation version control with (E)Git 28

Agenda

 Almost all about Git and EGit

 Push and pull, a typical day

with Git

 The ultimate question of

version control

© 2011

Git command line interfaces and tools

 gitg http://trac.novowork.com/gitg

 giggle http://live.gnome.org/giggle

Push up your code – next generation version control with (E)Git 29

 Git for OS X http://code.google.com/p/git-osx-installer

 GitX http://gitx.frim.nl

 cygwin http://www.cygwin.com

 msysGit http://code.google.com/p/msysgit

 TortoiseGit http://code.google.com/p/tortoisegit

http://trac.novowork.com/gitg
http://trac.novowork.com/gitg
http://live.gnome.org/giggle
http://live.gnome.org/giggle
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://gitx.frim.nl/
http://www.cygwin.com/
http://code.google.com/p/msysgit
http://code.google.com/p/tortoisegit

© 2011

Git IDE integration

Push up your code – next generation version control with (E)Git 30

 Useable version since EGit 0.11

 Stable version available with Eclipse

Indigo

 Updates 1.1/2.0/2.1/2.2 already scheduled

up to Eclipse 3.8

 Stable version available since version 10.x

 Usable version with some features

available since version 7.0

© 2011

Always keep in mind

 IDE integration

 Sometimes still in an early stage

 More updates in the future

 Usage concept

 (totally) different from CVS/ SVN

 Build server integration
 A plug-in for Git is required

 Available for Hudson and Jenkins

 No central server

 Makes backup of latest version more difficult

Push up your code – next generation version control with (E)Git 31

© 2011

The first step is always the hardest

 Create a new branch for every feature item, bug fix, …

 commit as often as you like

 push once when the feature, bug fix, … is complete

 reset (revert) depends on where the changes are

 Command line

 git checkout file for not staged (not added) files

 git reset HEAD file for staged files

 EGit requires simple selection of reset type (soft, mixed, hard)

 SHA-1 hash value instead of a revision number

 Usually the first six or seven characters are enough

Push up your code – next generation version control with (E)Git 32

© 2011

(E)Git Pros and Cons

Push up your code – next generation version control with (E)Git 33

Performance: extremely fast even in large projects

Offline mode: no server connection required

Branching/ merging: fast merging is done all the time

Fully distributed: no central server required

Repository size: requires less space as SVN

Search view: search for commits in Eclipse

Creativity: experimental branches for new ideas

Revisions: Hash value required for distributed versioning

No partial checkout: clones the entire repository

© 2011

And the winner is…

 EGit is ready

 Use it for your next new project

 Faster and much more fun

 Some commands are not available in EGit yet

 Install command line as well

 Updates already scheduled until Eclipse 3.8

 As a temporary alternative

 Connect your existing repositories via

 git svn

 git cvsimport

Push up your code – next generation version control with (E)Git 34

Keep in mind

Once started, it is very difficult to go back…

© 2011

More information

 Git http://git-scm.com

 Git Community Book http://book.git-scm.com/

 ProGit http://progit.org

 Git Cheat Sheet http://ktown.kde.org/~zrusin/git/

 GitHub www.github.com

 Eclipse JGit www.eclipse.org/jgit

 Eclipse EGit www.eclipse.org/egit

 Linus Torvalds on Git http://www.youtube.com/watch?v=4XpnKHJAok8

 It’s time to stop using Subversion http://altdevblogaday.org/2011/03/09/its-time-

to-stop-using-subversion

Push up your code – next generation version control with (E)Git 35

http://git-scm.com/
http://git-scm.com/
http://git-scm.com/
http://book.git-scm.com/
http://book.git-scm.com/
http://book.git-scm.com/
http://progit.org/
http://ktown.kde.org/~zrusin/git/
http://www.github.com/
http://www.eclipse.org/jgit
http://www.eclipse.org/egit
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=4XpnKHJAok8
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion

?
www.trivadis.com

  

Basel Bern Lausanne Zurich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg Munich Stuttgart Vienna

Thank you!

