Javain Scnfe’ry Critical Systems

;1?03

Java in Safety Critical Systms =

Towards Java Ceriification
aicas GmbH

]

A
W

Andy Walter, COO
2" July 2009




Java in Safety Critical Systems
Sy = - ‘; 3. g i " "\._ : p - o : 1
aicas

Critical Software Challenges

Complexity of applications increasing
Ada developers diminishing
C/C++ error prone and dangerous

« Java:
- modern development fools

- safe programming language
- comprehensive set of standard libraries

Is Java certifiable for safety crifical
applications?



Javai Scn‘e’ryC ritical Sys’rems

;1?03

Realtlme Speclflcatlon for Java

o Java Community Standard (JSR 1, JSR 282)
 Most common for realfime Java applications

 New Thread model: NoHeapRealtimeThread
- Never inferrupted by Garbage Collector

- Threads may not access Heap Objects

 Does not address certification of Safety Crifical
applications



Jav Sf’ryC’r ISy‘rm

« Upcoming Java Community Standard
(JCP 302)

Aims for DO-1/8B, Level A

Based on very limited RTSJ subset
ScopedMemory instead of Garlbage Collection
Extended typing to support stafic analysis



Javain Scnfe’ry Critical Systems

;1?03

Saety Crltlcal Java Proposal A

* Only RealtimeThreads are allowed
 No heap objects/ no GC
Object allocation in initialisation phase only

Initialisation [Run Recovery
Phase Phase Phase

Thread priorities may not be changed
Always priority celling emulatfion
OutOfMemoryError may not occur



Jav Sf’ryC’r ISy‘rm

Class Libraries for SCJava =

« Base: CLDC (IMP - Information Module Profile)
with
- Floating point support
- Error Handling
- JNI

- RTSJ-Subset (javax.realtime)

« ==> circa: lang, reflect, io, net, util, and realtime
* Exact library set has not been fixed

» Super sets for DO-178B, Level B and C will be
specified.



Javai Scn‘e’ryC ritical Sys’rems

New Standard D0-178C | %

* No OOT in DO-1/8B

« OOT provides
- Reusabillity

- Extendibility

- Code efficiency

- Modern development paradigm
- New vulnerabllities

« DO-1/78C introduces guidance and guidelines
on certification of OOT applications.



Jav Sf’ryC’r ISy‘rm

SC 205 / WG 71 Plenary

 Lead by RTCA and EUROCAE
 Update soffware standards for aviation
- DO-178B/ED-12B: flight software
regulations

- DO-248B/ED-94B: flight software
addendum

- DO-278/ED-109: ground support software

 Open to all inferested parties
* Organized in seven subgroups



NlelV

Sf’ryC’r al Systems

SG-1: Document Infegration

SG-2: Issues and Rationale

SG-3: Tool Qualification

SG-4; Model Bases Design and Verification
S5G-5: Object-Oriented Technology

SG-6: Formal Methods

SG-/: Safety and CNS Related Considerations
(communication, navigation,
surveillance)



Javain Scn‘e’ry Critical Systems

DO-178B Verification

Accuracy and Consistency
Compatibility with the target computer
Verifiability

Conformance to standards

Algorithm Accuracy

-~
:

Compatibility

Consistency

System
Requirements

High-Level
Requirements

as

realfime

N
A Y
\
]

Compliance
Traceability

Compliance
Traceability

~

Compatibility with the target computer
Verifiability

Conformance to standards
Partitioning Integrity

Software

Architecture

Accuracy and Consistency S
Compatibility with the target compute(
Verifiability
Conformance to standards
Algorithm Accuracy

N

-

s

Low-Level
Requirements

\
\

Compliance
‘

Verifiability
Conformance to standards
Accuracy & Consistency

——— -

-
Completeness and
Correctness

\

Compatibility with the
target computer

Executable
Object Code

S NN

~eam=-”

Compliance
Traceability

Complian‘ce
Robustness

Compliance
Robustness

— Development activity

» Verification activity

Note: Requirements include Derived
requirements



Javain Sofe’ry Critical Systems

| NN A o A ;las
DO 1786 IS Multltlered

realfime

Tier 0

System requirements
allocated to software

System design
L Reg’s |
Tier 1 & ?

Tier 2 components ready for machine ,
Design execution

L Tier 2 components not ready
_’

Req’s
3

Design

... ready ...

Req’s : ... Notready ...

& L d on L—_
Design and so ‘ ‘ Interpreter/
R LF Tier n-1 :

Execution
... ready ...

Platform
... NOt ready ...

v

vAY

\ 4

all tier n+1 components
now ready

v




Javain Scnfe’ry Critical Systems

;1?03

realfime

ODT Key Features |

* Prove required that OOT doesn't intfroduce
vulnerabilities in certified application
- Inherifance and redefinition

- Polymorphism

- Type conversion

- Overloading

- Exception management

- Dynamic memory management
- Virtualisation



Javain Scnfe’ry Critical Systems

Inherltance and Redefinition

 Multiple inheritance
- Interface level

- Implementation level
* Vulnerabilifies

- Indeterministic dispatch fime

- Semantic dissonance

- Implementation dissonance
 Objectives

- Fulfil specifications of all parent classes

- Include full class model in design



Javain Scnfe’ry Critical Systems

;1?03

Method Dlspatch

o Static vs. dynamic dispatch
- Static: called method depends on declared type

- Dynamic: called method depends on real type

* Vulnerabilities:
- Mixing static and dynamic dispatch in one
application might cause confusion
 Guidance:
- Style guide should specify which dispatch is to be
used.

- In Java, method dispatch is always dynamic



Javain Scnfe’ry Critical Systems

;1?03

realfime

Subclassmg /Subtyplng

« Method and class specification:
- Preconditions: acceptable input values

- Postconditions: return values, including
exceptions and errors, and side effects

- |Invariants

e Subclass, subtype equivalence

- Liskov's substitution principle:
Precondifions may not e strengthened,
postconditions and invariants may not be
weakened.



Javain Sofe’ry Critical Systems

;!?GS

Ad Hoc Polymorphlsm (Dverloadmgl eofime

* Improves readability and maintfenance
* Vulnerabilities:
- Ambiguity due to implicit fype conversion

* Guidance:
- Use explicit fype conversion instead



Java in Safety Critical Systems
Sy = - i ‘; 3. g i " "\._ : ] p - o : 1
| aicas

Parametrlc Polymorphlsm

Enables reuse without subtyping

Vulnerabilities:
- Substitution mismatch

- Unverified code

 Guidance:

- Each instantiaftion of parametric type needs to
e verified

Objectives
- Ensure type consistency

- Ensure all code is covered



Javain Scnfe’ry Critical Systems

;1?03

realfime

Type Convrsmns |

 Vulnerabilities
- Data loss

- Data corruption or exception

 Objectives
- Ensure that type conversions are safe
 Data Flow Analysis can statically prove correct
typing
* In Java, wrong type casts at least throw an
Exception



;1?03

realfime

« Separating exceptional behaviour from normal
behaviour

* Vulnerabllity

- uncaught or improperly handled exception
 Objective

- ensure all exceptions are properly handled

- fest coverage includes exceptional confrol paths

 Data Flow Analysis can statically prove that all
exceptions are handled



Javain Scnfe’ry Critical Systems

;1?03

Dvnamnc Memory Vulnerabllltles

1. Ambiguous references

.Fragmentation starvation

.Dedllocation starvation

.Heap memory exhaustion

.Premature deadllocation

.Lost update or stale reference
Indeterministic allocation or deallocation

N O O B O




Java in Safety Critical Systems

Dynamic Memory Safety Objectives

1.Unigue allocation
2.Fragmentation avoidance
3.Timely deallocation
4.Sufficient Memory
D.Reference consistency

6. Atomic move
/.Determinism

g!:os

realfime




;I?GS

realfime

Technique v

Manual Heap Allocat x | ? x x [N/A
Object Pooling X | x x x N/A
Stack Allocation X x x N/A
Scope Allocation x | x N/A
Automated Heap

Allocation X

= prevented automatically, X = by the application
N/A = not applicable, ? = difficult o ensure



Javain Scnfe’ry Critical Systems

;1?03

Vlrtuallsatlon Technlques

* Vulnerabillity:
iInferpreted code freated as data and not
validated
 Objective:
Certify system in layers
- Certify interpreter where its input is freated as
data

- Certify inferpreted program as code where
Interpreter is tfreated as execution platform

* Applies to any data that is inferpreted



Jav Sf’ryC’r ISy‘rm

» Clean syntax and semantics w/o preprocessor
wide ranging and befter tool support

Multiple inheritfance on interface level
No explicit pointer manipulafion
Pointer safe deadllocation

Single dispafch style

Strong, extendible type system

With RTSJ, well defined tasking model



Java in Safety Critical Systems

Jav Vaianfs

o J2EE—J2SE &
enterprise
extensions

J2SE—Standard Java

J2ME—Subset of J2SE
& additional classes

RTSJ—Add on to
J2EE, J2SE, or J2ME
for realtime

o SCJava—Subset
of RTSJ, subbset of
J2SE, & additional
classes




Javain Scnfe’ry Critical Systems

;1?03

"Certifying a Garbage Collector \

* Not possible for all collectors
- Must be deterministic; no unbound steps

- Must assume maximum memaory use

- Must consider allocation rate
 Example: Jamaica Collector

- No root scan and compaction (unbound)

- Mark and sweep steps on fixed size blocks

- Aufomatically fracks allocafion rafe

- GC work performed at allocation time

» Ofther threads not influenced



Java in Safety Critical Systems

Sn’llmryh

« Certification of OOT infroduces new guestions

 Automated Memory Management safer than
manual for complex tasks

e Java brings safety and reliability to complex
applications

e Clear Guidelines for OOT in the DO-178C
standard will ease Certification of Java
applications

« DO-1/8C will allow for certifiable Garbage
Collectors



	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

