Loosely or Lousily (oupleo\?

Vno\evd’o\mo\imq
(ommunication Patterns in
Microservices Architectures

Let’s talk about {ooo\

@berndruecker

How does oro\erivw) Pizza work?

Email
o 4 |

Email

d [

Pizza
Place

(onfirmation Email

@berndruecker

Feedback loop I= result

Email
| 4 [

(onfirmation Email
You ¢ Pizza Feedback (ACK, confirmation, rejection)

Place

Pizza Delivery

< Result

@berndruecker

Synchronous blocking behavior for the result?

Bad user experience

Does not scale well

vy |
@berndruecker
PROTEN DU

]

TS
x

(calable (o{{e MﬂiI;q

https://

www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

—_ - e
2 ‘. v’:‘ _}' . oS B
Photo by John Ingle

https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
http://www.sheppard.af.mil/News/Photos/igphoto/2001871578/

only the first communication step i§ synchronous

PUT /order *
o r@—— Hl =
HTTP 200 -
You - Pizza ‘Q

Place

O o0
5 6 -—
Pizza Delivery

The task of
Pizza making i
lonq mvw\ing

@berndruecker

@berndruecker

Example: Build a pizza ordering app

PUT /order
> Pizza Delivery
PR ——— System
HTTP 2oo0:

2bot your order. Should
be delievered in Yough(g
41 minutes.”

@berndruecker

(ommand v§. event-based communication

| order this pizza
o A _

oK — got it

You <& Pizza
Place

»Hey — 1 am hungry!”
@ g

You Pizza
Place

@berndruecker

De{imiﬁoms

Someﬂ\inq happened in the past. It is a [act.

Sender does not know who picks up the event.

(ommand fender wants §.th. fo happen. It hag an intent.

Kecipievﬂ’ does not know who issued the command.

&>

s

Events vs. (bmmavw\s

Er fn E

»Pizza Salmon

i§ ready!”
J

ey
=

-

. o |
R,

‘_‘\.

ndruecker

@berndruecker

Example: Build a pizza orderina app uing events
Hey — somebody

ordered

PUT /order

>

Pizza Delivery
HTTP 200:

wbot your order. Should ; . .

be delievered in Yough(y Hey = PlZZﬂ 1

41 minutes.”

| have a Pizza Veady

{ov you

PUT /order

>

‘---------

HTTP 200:
wbot your order. Should
be delievered in roughly
41 minutes.”

Hey — sow\eboo\g

ordered

Pizza Delivery

Syd’em

| have a Pizza

{or you

L

@berndruecker

Hey — Pizza 1§
Veo\dy

Example: Build a pizza ordering app via orchestration

PUT /order
S
Pizza Delwevy -,
_________ System Y
HTTP 200:
wbot your order. Should
be delievered in ro WJh(g
41 minutes.”
O

But how to implement é@
long-running things?

@berndruecker

OREILLY

Practical
Process
Automati

el "f?%é 3

Bernd Ruecker

(o-founder and
Chief Technologis’r o}
(ﬂW\IAV\dM Jakob Freund and Bernd Ricker

REAL-LIFE

BPMN

Includes an introduction to DMN

bernd.ruecker@camunda.com
@berndruecker
http://berndruecker.io/

Analyze, improve and automate your business processes

CAMUNDA

http://berndruecker.io/

@berndruecker

An workflow engine provides long running (apabiliﬁes

Wovk{-low Engine:

Workllow Engine
{ ’ @ I§ stateful
|

v Scheduler Can wait

(an retry

(an escalate

Process De{-iniﬁons

an compensate
Durable State (P

Provides visibilit y

@berndruecker

A Possible process for the Pizza oro\evimq Jystem

Pizza

i - : delivered
{%} Q?} : Wan_for Pizza to Wait for delivery
Inform customer Bake Pizza be picked up for -)
. . confirmation
about delivery delivery
time

Estimate
delivery time

Pizza
ordered

Pickup time

expired “id
P Check Pizza
delivery

@berndruecker

Pizza xy was Picked Driver z handed over

YOM aAn Shu WOYk W‘+h BVCWl'S up by driver z Pizza successfully

a ™
Pizza
&'ﬂ EI : IZI delivered
Wait for Pizza to . ‘
orm customer Bake Pizza be picked up for Wait for delivery
Estlmate . confirmation
about delivery delivery
delivery time
time
Pizza
ordered
\ /i J

Pickup time

expired Check Pizza
delivery

@berndruecker

Advam’raneS

B Visibilﬂ’y: His{’ovg and

Long running: Wai{'ing

Visi’oilH’y: What's the
for events to happen

current status?

audit trail - -
™ Pizza
% %t for Pizza to Et for delivery delvered
O Inform O Bake Pizza be picked up for :;t:“f e
customer about delivery —.{ '
delivery time
Pizza
ordered
" 'f."fr \\w J
Details View \\CF;D”
N

Flow Node Instance Id Pickup time
heck Pizza

Time-out hano\linq delivery
/ escalation

Start Date
2022-05-30 15:26:54
End Date

2022-05-30 15:28:02

Developev-{rieno\ly

Your code to provide a REST endpoint WOYk{'lOW elf\quﬂes

@PutMapping("/pizza-order")

public ResponseEntity<PizzaOrderResponse pizzaOrderReceived(...) {
HashMap<String, Object> variables = new HashMap<String, Object>();
variables.put("orderId", orderlId);

Developers

ProcessInstanceEvent processInstance = camunda.newCreateInstanceCommand() n n
bpmnProcessId("pizza-order")

.latestVersion() 0 o
.variables(variables)
.send().join();
return ResponseEntity.status(HttpStatus.ACCEPTED).build();
} Process
Automation

=
) Walt for Pizza to e
1Fform customer Bake Pizza be picked up for Wait for delivery
Estimate o - confirmation
about delivery
delivery time K
time

Pickup time
expired

@berndruecker

@berndruecker

orchestration vs. Choreography

@berndruecker

Definition

orchestration command-driven communication

Choreography event-driven communication

@berndruecker

Let’s switch examples: order fulfillment

order
II!!!!II

7z~ ~
(’C:heckout\
~ /

-_—

@berndruecker

Event chaing

. -~
(’C:heckout \
V4

N o

Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado

Pinball Machine Architecture

~7 N
(Checkout)
N o -
o™ ~ I’ -~ N
[4 Payment] ™~ \ Shlpment/
- (| S -
~ \ nventory/
~ -

-

~

(Notification

~

_—

-

\

@berndruecker

@berndruecker

https://twitter.com/berndruecker/

@berndruecker

orchestration and (hoveogmphg

This 1§
choreography order
YR placed
Checkout ~ ~
(\ _ Order S
Thit - FquiIImerEl
191
X Retrieve
orchestration ument
o™~ I’ -~ \
I payment Payment \ Shipmentl
\ received) W

!

Send command: Send command: Send command: Send event:

retrieve payment fetch goods ship goods order delivered

-~ ~
(Checkout\ TN

ﬁ Order ‘

~ - Fulfillment
I’ /7
o™~ I/ ~ \
/4 Payment] ™~ \ Shlpment/
\ () W
-~ \ Inventory

~ -

@berndruecker

@berndruecker

(ollaboration style i§ independant of communication style

(koreoqmphy
’ |
(Checkout ~ ~ N
~ _ Order
- Fulfillment /

orchestration

Direction of dependency

order Retrieve
placed Payment
E Checkout j 4’{ order E Payment j
Payment
received

Event-driven: K‘ Command-driven

Decision to couple i§ on the receivim’ Side Decision to couple i§ on the Sem\ing side
< —

Direction o} Aepemo\emc9

it i easy to change the process How

o

Send command:
retrieve payment

Send command: Send command:

fetch goods ship goods

Send command:
retrieve payment

received

Send command:
fetch goods

Goods
fetched

Send event:
order delivered

Send command:
Ship goods

Goods
shipped

@berndruecker

Order
delivered

@berndruecker

Processes are domain logic and live V\sio\e service boundariey

- =

A

[Checkout)] T~
S N { oOrder \
~

[—

\ ,___-\ ,-—'l-\
(Payment) P\ fShipment’

S =7 [Inventory]
N -’

—

b I

orchestration i§ not centralized

Every microservice (process solution) owns its process model, glue code, and any additional artifacts

Microservice A Microservice B Microservice (

ldeally San§
A d
(probably s gl

felf-service control plane

e Console

Clust

Clusters Modeler

ers

Name

1.3.1 Patch Release

Version 1.3.2 tests

Simon-Bernd G3-L Test

New_cluster_Geetha

QA Optimize Test3

Menski - Deleting Stuff

Acess-api-aut-test-feb

Region

Integration Worker

Integration Worker

Integration Worker

Integration Worker

Integration Worker

Integration Worker

Integration Worker

Generation

Zeebe 1.3

- update available

Zeebe 1.3.2 - update available

Zeebe 8.0.0 - update available

Zeebe 1.2.2 - update available

Zeebe 1.2.2 - update available

Zeebe 8.0.0 - update available

Zeebe SNAPSHOT

Q Bernd Ruecker v

Create New Cluster

Status

Healthy

Healthy

Healthy

Healthy

Healthy

Healthy

Healthy v

& berndruecker / flowing-retail ' pusic R Unpin | @ Unwatch 116

<> Code (O Issues 6 11 Pull requests 14 Q) Discussions () Actions [Projects [0 Wiki
(ome code!

¥ master -

% Fork 420 Starred 1.2k

@ Security 56 [+ Insights
flowing-retail / kafka / java / Go to file Add file -
gj berndruecker Added payment microservice alternative using Zeebe (related to #73)

27bceee 7 daysago (Y History
[READMEmd

adjusted readme to latest version/ports

M pomxml added build for event ingestion to Cl

= READMEmd

Flowing Retail / Apache Kafka / Java

This folder contains services written in Java that connect to Apache Kafka as means of communication between the services.
Tech stack:

e Java g

e Spring Boot 2.6.x

» Apache Kafka (and Spring Kafka)

« Camunda Zcebe 8.x (and Spring Zecbe)

Available
- Java

Available:

= Java

Available
- Java + (amunda
- Java + Zeebe

Available

- Java + (amunda

Available

- Java

Available:
- Java

https://github.com/berndruecker/flowing-retail/tree/master/kafka

https://github.com/berndruecker/flowing-retail/tree/master/kafka

@berndruecker

Loyalty points bank

Publishes Customer created Subscribes

Post service
event

Building
l\/Licrosenfice_s

Customer service Email service

Sam Newman: Building Microservices T samiewman

Mix orchestration and choveoqmphy

@berndruecker

Customer Onboarding

"

(] 1 ot ~ ~
Send "check Wait for ") " , Send "send Publish
. " Send "check Wait for "credit " "
address address w " Create customer welcome letter customer
N J credit" command checked" event o
command checked" event | | | command created" event
Registration | o~ i ~ | ~ Customer
requested i \/ [lx | i \/ 4‘ i created
\ J J *
SR L‘_‘_‘_""_-l-_"_f ‘‘‘‘‘‘‘ P VO L T - N|
—

(horeoqmpky

orchestration

Address Check

Credit Check

orchestration

Loyalty Points

orchestration

Notification Service (including Email)

Want to learn more about choreography vs. orchestration?

Recording from QCon: https://drive.google.com/file/d/1IRWoQCX-gTPs7RVP5VrXaF1)ozYWVb]v/view?usp=sharing
Slides: https://www.slideshare.net/BerndRuecker/gotopia-2020-balancing-choreography-and-orchestration

OREILLY
Practical
Process piT Balancing
Automation (horeography &
S orchestration
Dberndruecker

Bernd Ruecker

https://learning.oreilly.com/library/view/practical-process-automation/9781492061441/
30 days trial: https://learning.oreilly.com/get-learning/?code=PPAER20

https://learning.oreilly.com/library/view/practical-process-automation/9781492061441/
https://learning.oreilly.com/get-learning/?code=PPAER20
https://drive.google.com/file/d/1IRWoQCX-gTPs7RVP5VrXaF1JozYWVbJv/view?usp=sharing
https://www.slideshare.net/BerndRuecker/gotopia-2020-balancing-choreography-and-orchestration

(ommunication options — Quick Summary

Communication Synchronous Asynchronous
Style Blocking Non-Blocking
Collaboration Command-Driven Event-Driven
Style

Messaging Messaging
Example REST (Queues) (Topics)
Feedback Loop HTTP Response)

Response Message

Pizza Ordering via Phone Call E-Mail Twitter

7

@berndruecker

This is not the

samel

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

Temporal Coupling Service depends on Synchronous blocking
availability of other communication
services

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

Temporal Coupling Service depends on Synchronous blocking
availability of other communication
services

Types of Coupling

@berndruecker

Type of coupling

Implementation Coupling

Temporal Coupling

Deployment Coupling

Description Example

Service knows internals of
other services

Joined database

Service depends on
availability of other
services

Synchronous blocking
communication

Multiple services can only Release train

be deployed together

Recommendation

Types of Coupling

@berndruecker

Type of coupling

Implementation Coupling

Temporal Coupling

Deployment Coupling

Description Example

Service knows internals of
other services

Joined database

Service depends on
availability of other
services

Synchronous blocking
communication

Multiple services can only Release train

be deployed together

Recommendation

Typically avoid, but
depends

Types of Coupling

@berndruecker

Type of coupling

Implementation Coupling

Temporal Coupling

Deployment Coupling

Domain Coupling

Description

Service knows internals of
other services

Service depends on
availability of other
services

Multiple services can only
be deployed together

Business capabilities
require multiple services

Example

Joined database

Synchronous blocking
communication

Release train

Order fulfillment requires
payment, inventory and

shipping

Recommendation

Typically avoid, but
depends

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

Temporal Coupling Service depends on Synchronous blocking
availability of other communication
services

Deployment Coupling Multiple services can only Release train Typically avoid, but
be deployed together depends

Domain Coupling Business capabilities Order fulfillment requires unless you

require multiple services payment, inventory and

Mk change business
shipping

requirements or service
boundaries

Type of coupling

Implementation Coupling

Temporal Coupling

Deployment Coupling

Domain Coupling

Recommendation

Typically avoid, but
depends

unless you
change business
requirements or service
boundaries

The communication siyle can reduce +empoml
coupﬁnq

Some people refer to this, when they say that event-
driven systems decouple better.

But in reali‘fy, it jus’r turng the direction of the
dependency around.

The collaboration style does not decouple!

@berndruecker

Messaging?

Patterns To Survive Remote (ommunication

Service
Consumer

Pattern/Concept

Service Discovery
Circuit Breaker

Bulkhead

Load Balancing

Retry

ldempotency

De-duplication

Back Pressure & Rate Limiting
Await feedback

Sagas

Service

Use With Provider

Sync

Sync

Sync

Sync
Sync / Async
Sync / Async
Async
Sync / (Async)
Async
Sync / Async

@berndruecker

@berndruecker

Summary

* Know
* communication style (syvxc/ async)
* collaboration styles (command/event)

* You can get rid o} temporal coupling with asynchronous communication
* Make sure you or your team can handle it
* You will need long running capabilities (you might need it anyway)
* Synchronous communication + correct patterns might also be 0K

* Domain coupling does not go away!

Want to learn more...

https://ProcessAutomationBook.com/

Practical
Process _):’
Automation

c}mym

What To Expect From This Book
About The Author
mpl
Customer Onboarding Example
Order Fulfillment Example
Other Examp!
Additional R s

Curated List of Tools

The Architect Always Implements

Discussing concepts is only half the fun if nnot point to concrete code examples. Runnable code forces you t precise, to
think about details you can leave out on the conc: e st importantly, it often explains thin, t. 1 am personally a big
fan of the motto “th: ct always impleme:

This is why there is source e belonging to this book, which you can find in this part of the website. These exampl
help you better understand the pts described in this book - 1 so give you a great opportunity to play with
whenever you are bored from reading

Examples Overview

: A process solution used in Chapter 2 of the book to introduce executable proce:
d new maobile phone omers in a tel nunication company.

Example using microservices implementing an end-to-end order fullfilment process that involves
multiple mi s and various local process models. While mentioned at multiple pl n the book, it the core example in
Chapter 7 and Chapter 8.

« Othe le: Curated list of interesting links to more executable examples, typically demonstrating specific concepts.

O'REILLY

Practical
Process
Automation

Orchestration and Integration in Microservices
and Cloud Native Architectures

https://processautomationbook.com/

W

Thank you!

