
Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited.

Spring Framework 3.0
The Next Generation

Jürgen Höller
VP & Distinguished Engineer

SpringSource



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 2

Quick Review: Spring 2.5

• Annotation-based component style
– dependency injection: @Autowired

• with optional @Qualifier or custom qualifier

– middleware services: @Transactional
– stereotypes: @Component, @Repository, @Controller

• Common Java EE 5 annotations supported too
– @PostConstruct, @PreDestroy, @Resource, etc

• Component scanning in the classpath
– as alternative to (minimal) XML bean definitions

• Annotated web controllers (a.k.a. @MVC)



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 3

Annotated Bean Component

@Service
public class RewardNetworkService

implements RewardNetwork {

@Autowired
public RewardNetworkService(AccountRepository ar) {
…

}

@Transactional
public RewardConfirmation rewardAccountFor(Dining d) {
…

}
}



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 4

Test Context Framework

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class RewardSystemIntegrationTests {

@Autowired
private RewardNetwork rewardNetwork;

@Test
@Transactional
public void testRewardAccountForDining() {

// test in transaction with auto-rollback
}

}



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 5

@MVC Controller Style

@Controller
public class MyController {

private final MyService myService;

@Autowired
public MyController(MyService myService) {

this.myService = myService;
}

@RequestMapping("/removeBook")
public String removeBook(@RequestParam("book") String bookId) {

this.myService.deleteBook(bookId);
return "redirect:myBooks";

}
}



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 6

Spring 3.0 Themes

• Java 5+ foundation
– even stronger support for annotated components

• Spring Expression Language
– Unified EL++

• Comprehensive REST support
– and other Spring @MVC additions

• Support for Portlet 2.0
– action/event/resource request mappings

• Declarative model validation
– Hibernate Validator, JSR-303

• Early support for Java EE 6
– JSF 2.0, JPA 2.0, etc



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 7

Use of Meta-Annotations

• More powerful options for custom annotations
– combining meta-annotations e.g. on stereotype
– automatically detected (no configuration necessary!)

@Service
@Scope("request")
@Transactional(rollbackFor=Exception.class)
@Retention(RetentionPolicy.RUNTIME)
public @interface MyService {}

@MyService
public class RewardsService {

…
}



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 8

Annotated Factory Methods

• Spring 3.0 includes the core functionality of the 
Spring JavaConfig project
– configuration classes defining managed beans
– common handling of annotated factory methods

@Bean @Primary @Lazy
public RewardsService rewardsService() {

RewardsServiceImpl service = new RewardsServiceImpl();
service.setDataSource(…);
return service;

}



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 9

EL in Bean Definitions

<bean class="mycompany.RewardsTestDatabase">

<property name="databaseName"
value="“#{systemProperties.databaseName}”/>

<property name="keyGenerator"
value="“#{strategyBean.databaseKeyGenerator}”/>

</bean>



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 10

EL in Component Annotations

@Repository
public class RewardsTestDatabase {

@Value(“#{systemProperties.databaseName}”)
public void setDatabaseName(String dbName) { … } 

@Value(“#{strategyBean.databaseKeyGenerator}”)
public void setKeyGenerator(KeyGenerator kg) { … }

}



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 11

EL Context Attributes

• Example showed access to EL attributes
– "systemProperties", "strategyBean"
– implicit references in expressions

• Implicit attributes to be exposed by default, 
depending on runtime context
– e.g. "systemProperties", "systemEnvironment"

• global platform context

– access to all Spring-defined beans by name
• similar to managed beans in JSF expressions

– extensible through Scope SPI
• e.g. for step scope in Spring Batch



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 12

Web Context Attributes

• Implicit web-specific attributes to be 
exposed by default as well
– "contextParameters": web.xml init-params
– "contextAttributes": ServletContext attributes
– "request": current Servlet/PortletRequest
– "session": current Http/PortletSession

• Exposure of all implicit JSF objects when 
running within a JSF request context
– "param", "initParam", "facesContext", etc
– full compatibility with JSF managed bean facility



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 13

REST Support

• Spring MVC to provide first-class support for 
REST-style mappings
– extraction of URI template parameters
– content negotiation in view resolver

• Goal: native REST support within Spring 
MVC, for UI as well as non-UI usage
– in natural MVC style

• Alternative: using JAX-RS through integrated 
JAX-RS provider (e.g. Jersey)
– using the JAX-RS component model to build 

programmatic resource endpoints



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 14

REST in MVC - @PathVariable

@RequestMapping(value = "/rewards/{id}", method = GET)
public Reward reward(@PathVariable("id") long id) {

return this.rewardsAdminService.findReward(id);
}

http://rewarddining.com/rewards/12345



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 15

Common @MVC Refinements

• More options for handler method parameters
– in addition to @RequestParam and @PathVariable
– @RequestHeader: access to request headers
– @CookieValue: HTTP cookie access
– supported for Servlet MVC and Portlet MVC

@RequestMapping("/show")
public Reward show(@RequestHeader("region") long regionId,

@CookieValue("language") String langId) {
...

}



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 16

Portlet 2.0 Support

• Portlet 2.0: major new capabilities
– explicit action name concept for dispatching
– resource requests for servlet-style serving
– events for inter-portlet communication
– portlet filters analogous to servlet filters

• Spring's Portlet MVC 3.0 to support explicit 
mapping annotations
– @ActionMapping, @RenderMapping, 

@ResourceMapping, @EventMapping
– specializations of Spring's @RequestMapping

• supporting action names, window states, etc



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 17

Spring Portlet MVC 3.0

@Controller
@RequestMapping("EDIT")
public class MyPortletController {

…

@ActionMapping("delete")
public void removeBook(@RequestParam("book") String bookId) {

this.myService.deleteBook(bookId);
}

@EventMapping("BookUpdate")
public void updateBook(BookUpdateEvent bookUpdate) {

// extract book entity data from event payload object
this.myService.updateBook(…);

}
}



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 18

Model Validation

public class Reward {
@NotNull
@Past
private Date transactionDate;

}

In view:
<form:input path="transactionDate">

• Same metadata can be used for persisting, rendering, etc
• Spring 3.0 RC1: to be supported for MVC data binding
• JSR-303 "Bean Validation" as the common ground



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 19

Spring 3.0 and Java EE 6

• Early Java EE 6 API support in Spring 3.0
– integration with JSF 2.0

• full compatibility as managed bean facility

– integration with JPA 2.0
• support for lock modes, query timeouts, etc

– support for JSR-303 Bean Validation annotations
• through Hibernate Validator 4.0 integration

– all embeddable on Tomcat 5.5+ / J2EE 1.4+

• Spring 3.x: support for Java EE 6 platforms
– Servlet 3.0 (waiting for GlassFish 3 and Tomcat 7)
– JSR-236 "Concurrency Utilities for Java EE"



Copyright 2009 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 20

Spring 3.0 Summary

• Spring 3.0 embraces REST and EL
– full-scale REST support
– broad Unified EL++ support in the core

• Spring 3.0 significantly extends and refines 
annotated web controllers
– RESTful URI mappings
– annotation-based model validation

• Spring 3.0 remains backwards compatible 
with Spring 2.5 on Java 5+
– enabling a smooth migration path


