
GraalVM 21.2 Feature Update
der universellen VM
Merkmale und Einsatzgebiete der GraalVM

Wolfgang Weigend

Master Principal Solution Engineer | global Java Team

Java Technology & GraalVM and Architecture

September 2021

Safe harbor statement

The following is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions.
The development, release, timing, and pricing of any features or functionality
described for Oracle’s products may change and remains at the sole
discretion of Oracle Corporation.

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.2

GraalVM Native Image early adopter status
GraalVM Native Image technology (including SubstrateVM) is Early Adopter technology. It is available
only under an early adopter license and remains subject to potentially significant further changes,
compatibility testing and certification.

• GraalVM in the Java SE Subscription

• GraalVM Enterprise Intro

• GraalVM Just-in-Time Compiler

• GraalVM Polyglot support for multiple languages

• GraalVM Enterprise Native Image

• GraalVM Enterprise Components

• GraalVM Release Notes

• GraalVM Espresso – Java on Truffle

• Summary

Agenda

Copyright © 2021, Oracle and/or its affiliates | 3

• Oracle Java SE Subscription now entitles customers to use Oracle
GraalVM Enterprise at no additional cost

• Key benefits for Java SE Subscribers:

• Native Image utility to compile Java to native executables that start almost instantly
for containerized workloads

• High-performance Java runtime with optimizing compiler that can improve
application performance

GraalVM Enterprise with Java SE Subscription

+
4 Copyright © 2021, Oracle and/or its affiliates

GraalVM Enterprise

High-performance optimizing
Just-in-Time (JIT) compiler

Multi-language support

for the JVM

GraalVM Enterprise
High-performance runtime that provides significant improvements in application performance and efficiency

Copyright © 2021, Oracle and/or its affiliates6

Ahead-of-Time (AOT)
“native image” compiler

GraalVM JIT Compiler working

7 Copyright © 2021, Oracle and/or its affiliates

• Inlining

 Code der aufzurufenden Methode/Funktion anstelle des Aufrufs

• On-Stack Replacement

 Loop-Compilation, ohne auf den Methodenaufruf zu warten

• Escape Analysis

 Automatische Stack-Allokation, ohne GC

• De-Optimierung

 Optimierung rückgängig machen

JIT Compiler written in C++

8 Copyright © 2021, Oracle and/or its affiliates

JIT Compiler written in Java

9 Copyright © 2021, Oracle and/or its affiliates

GraalVM

10 Copyright © 2021, Oracle and/or its affiliates

• Graal

 JIT Compiler
o GraalGraalGraalGraal in in in in GraalVMGraalVMGraalVMGraalVM ---- A new Java JIT CompilerA new Java JIT CompilerA new Java JIT CompilerA new Java JIT Compiler

 Graal integrated via Java Virtual Machine Compiler Interface (JVM CI)

 Use a JDK with Graal (jdk.internal.vm.compiler)

• Truffle

 Language Implementation Framework

• Substrate VM

 Runtime Library and a set of tools for building Java AOT compiled code

GraalVM - Polyglot (1)

11 Copyright © 2021, Oracle and/or its affiliates

GraalVM - Polyglot (2)

12 Copyright © 2021, Oracle and/or its affiliates

GraalVM - Language Usability

Production-Ready Experimental Visionary

Java Ruby Python

Scala, Groovy, Kotlin R VSCode Plugin

JavaScript LLVM Tool Chain GPU Integration

Node.js WebAssembly

Native Image LLVM Backend

VisualVM

GraalVM - Language Usability for the Platform

Feature Linux AMD64 Linux ARM64 MacOS Windows

Native Image supported experimental supported supported

LLVM Runtime supported experimental supported not available

LLVM Toolchain supported experimental supported not available

JavaScript supported experimental supported supported

Node.js supported experimental supported supported

Java on Truffle experimental not available experimental experimental

Python experimental not available experimental not available

Ruby experimental not available experimental not available

R experimental not available experimental not available

WebAssembly experimental experimental experimental experimental

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1.000 10.000 100.000 1.000.000 10.000.000

R
e
q
u
e
st
s
p
e
r
S
e
co

n
d

Cumulative number of requests sent by ApacheBench

Popular Framework Benchmark

GraalVM Native Image

GraalVM JIT

JDK12, HotSpot

16% higher

15 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

GraalVM Enterprise throughput

$

Peak ThroughputLow Memory
Footprint

Small Packaging

Ahead-of-Time

Just-in-Time

Startup Speed

GraalVM Enterprise compilation performance characteristics

Reduced
Max Latency

GraalVM Enterprise compilation performance characteristics
Profile Guided Optimization

Low Memory
Footprint

Reduced
Max Latency

Small Packaging

Peak Throughput

Ahead-of-Time

Just-in-Time

Startup Speed

GraalVM Native Image

Windows
Executable

Microservices and Containers
GraalVM Enterprise Native Image—Ahead-of-time compiler & runtime

Up to 5x less memory
100x faster startup

macOS
Executable

Linux
Executable

.class

.jar

.class

.jar

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.19

Closed World Assumption

• The points-to analysis needs to see all bytecode

– Otherwise aggressive AOT optimizations are not possible

– Otherwise unused classes, methods, and fields cannot be removed

– Otherwise a class loader / bytecode interpreter is necessary at run time

• Dynamic parts of Java require configuration at build time

– Reflection, JNI, Proxy, resources, ...

• No loading of new classes at run time

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.20

Image Heap

• Execution at run time starts with an initial heap: the “image heap”

– Objects are allocated in the Java VM that runs the image generator

– Heap snapshotting gathers all objects that are reachable at run time

• Do things once at build time instead at every application startup

– Class initializers, initializers for static and static final fields

– Explicit code that is part of a so-called “Feature”

• Examples for objects in the image heap

– java.lang.Class objects, Enum constants

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.21

One Compiler, Many Configurations

22

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

ExecutesExecutesExecutesExecutes

Your ApplicationYour ApplicationYour ApplicationYour Application

JIT Compilation

1111

Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside the Java time compilation inside the Java time compilation inside the Java time compilation inside the Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

GraalVM
Compiler

App.jar

1111

One Compiler, Many Configurations

23

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

ExecutesExecutesExecutesExecutes

Your ApplicationYour ApplicationYour ApplicationYour Application

JIT Compilation

1111

1111 Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside the Java time compilation inside the Java time compilation inside the Java time compilation inside the Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

2222 Compiler also used for justCompiler also used for justCompiler also used for justCompiler also used for just----inininin----time compilation of JavaScript codetime compilation of JavaScript codetime compilation of JavaScript codetime compilation of JavaScript code

GraalVM
Compiler

GraalJSApp.jar

2222

One Compiler, Many Configurations

24

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

ExecutesExecutesExecutesExecutes

Native Image GeneratorNative Image GeneratorNative Image GeneratorNative Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native ImageNative ImageNative ImageNative Image

BuildsBuildsBuildsBuilds

1111

Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside the Java time compilation inside the Java time compilation inside the Java time compilation inside the Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

Compiler configured for static pointsCompiler configured for static pointsCompiler configured for static pointsCompiler configured for static points----to analysisto analysisto analysisto analysis

Compiler configuredCompiler configuredCompiler configuredCompiler configured for aheadfor aheadfor aheadfor ahead----ofofofof----time compilationtime compilationtime compilationtime compilation

GraalVM
Compiler 2222

GraalVM
Compiler 3333

GraalVM
Compiler

Your
Application

1111

2222

3333

One Compiler, Many Configurations

25

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

ExecutesExecutesExecutesExecutes

Native Image GeneratorNative Image GeneratorNative Image GeneratorNative Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native ImageNative ImageNative ImageNative Image

JIT Compilation

GraalJSBuildsBuildsBuildsBuilds

1111

1111 Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside the Java time compilation inside the Java time compilation inside the Java time compilation inside the Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

2222 Compiler configured for static pointsCompiler configured for static pointsCompiler configured for static pointsCompiler configured for static points----to analysisto analysisto analysisto analysis

3333 Compiler configured for aheadCompiler configured for aheadCompiler configured for aheadCompiler configured for ahead----ofofofof----time compilationtime compilationtime compilationtime compilation

4444 Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside a Native Imagetime compilation inside a Native Imagetime compilation inside a Native Imagetime compilation inside a Native Image

GraalVM
Compiler 2222

GraalVM
Compiler 3333

GraalVM
Compiler

4444

GraalVM
Compiler

Native Image - Details

AheadAheadAheadAhead----ofofofof----TimeTimeTimeTime
CompilationCompilationCompilationCompilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until Iterative analysis until Iterative analysis until Iterative analysis until
fixed point is reachedfixed point is reachedfixed point is reachedfixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap Image Heap Image Heap Image Heap

WritingWritingWritingWriting

Output:
Native executable

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.26

Benefits of the Image Heap

27

Without GraalVM
Native Image

Build timeBuild timeBuild timeBuild time

Run timeRun timeRun timeRun time

GraalVM Native Image
(default)

Build timeBuild timeBuild timeBuild time

Run timeRun timeRun timeRun time

GraalVM Native Image:
Load configuration file

at build time

Build timeBuild timeBuild timeBuild time

Run timeRun timeRun timeRun time

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Profile-Guided Optimizations (PGO)

• AOT compiled code cannot optimize itself at run time (no “hot spot” compilation)

• PGO requires representative workloads

• Optimized code runs immediately at startup, no “warmup” curve

native-image
--pgo-instrument

Instrumented
Binary

native-image
--pgo

Optimized
BinaryWorkloads Profiles

Out of Band Optimization

28

Lower cloud costs for containerized workloads, and microservices
GraalVM Enterprise Native Image

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.29

0,1

1

10

100

1000

C GraalVM Native

Image

Go Java HotSpot VM

(JDK 11)

Execution Time [ms]

0

5

10

15

20

25

30

35

40

45

50

C GraalVM Native

Image

Go Java HotSpot VM

(JDK 11)

Maximum memory [MB]

Competitive startup time Significantly reduced memory requirements

Supported by leading frameworks

GraalVM Enterprise Native Image

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.30

Coming Soon!

Which version of Spring Boot is certified or official supported with GraalVM EE 21 native image?

• We don’t currently offer certification of Spring Boot but we are discussing it.

• But Spring will declare Spring Native 1.0, which is essentially “certification” for Native Image.

When do we expect the declaration of Spring Native 1.0, which is the essentially “certification” for
the GraalVM native image?

• Spring Native is in beta now, as the latest 0.10.0

• Spring Native 0.9.0 supports Spring Boot 2.4.3

• Spring Native 0.9.1 will support Spring Boot 2.4.4

• Spring Native beta 0.10.0, based on GraalVM 21.1.0, will support Spring Boot 2.5, etc.

• https://spring.io/blog/2021/06/14/spring-native-0-10-0-available-now

Spring Native should be GA in the next few months.

GraalVM Enterprise Native Image - Spring Native

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.31

Coming Soon!

32

What GraalVM is for Microservices and Cloud Runtime

Your Java /Java Bytecode
Application (Native Binary)

GraalVM

Java Service
(Native Binary)

GraalVM

Java Service
(Native Binary)

GraalVM

Up to 5x Less Memory
100x Faster Startup

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

983 ms

1967 ms

979 ms

11 ms

30 ms

23 ms

0 ms 500 ms 1000 ms 1500 ms 2000 ms

Quarkus

Micronaut

Helidon

GraalVM Native Image

JDK 8
33

Cloud Services – Startup Time

42x

65x

93x

160 MByte

198 MByte

107 MByte

16 MByte

37 MByte

26 MByte

0 MByte 50 MByte 100 MByte 150 MByte 200 MByte 250 MByte

Quarkus

Micronaut

Helidon

GraalVM Native Image

JDK 834

Cloud Services – Memory Footprint

5x

4x

10x

GraalVM Enterprise Components

MacOS

wolfgangweigend@wolfgangweigend-mac hello % gu list

ComponentId Version Component name Stability Origin

graalvm 21.2.0.1 GraalVM Core -

R 21.2.0 FastR Experimental github.com

espresso 21.2.0.1 Java on Truffle Experimental oca.opensource.oracle.com

js 21.2.0.1 Graal.js Supported

llvm-toolchain 21.2.0.1 LLVM.org toolchain Supported oca.opensource.oracle.com

native-image 21.2.0.1 Native Image Early adopter oca.opensource.oracle.com

nodejs 21.2.0.1 Graal.nodejs Supported oca.opensource.oracle.com

python 21.2.0.1 Graal.Python Experimental oca.opensource.oracle.com

wasm 21.2.0.1 GraalWasm Experimental oca.opensource.oracle.com

GraalVM Enterprise Components – Version 21.2.0.1

Copyright © 2020, Oracle and/or its affiliates36

GraalVM 21.2.0 Release Notes
Summary

GraalVM Enterprise Edition 21.2.0 Release Notes (1)

Copyright © 2021, Oracle and/or its affiliates | 38

• Java and Compiler Updates

The Oracle JDK release that GraalVM Enterprise Edition is built on was updated to:

• 8u301 for Java 8 based GraalVM Enterprise

 Java SE 8 release notes

• 11.0.12 for Java 11 based GraalVM Enterprise

 Java SE 11 release notes

• 16.0.2 for Java 16 based GraalVM Enterprise

 Java SE 16 release notes

https://docs.oracle.com/en/graalvm/enterprise/21/docs/overview/release-notes/

GraalVM Enterprise Edition 21.2.0 Release Notes (2)

Copyright © 2021, Oracle and/or its affiliates | 39

• Java and Compiler Updates

• Platform Updates

• Native Image

• Polyglot Runtime

• Java on Truffle

• JavaScript

• WebAssembly

• LLVM Runtime

• Ruby

• Python

• R

• Tools

• Polyglot Embedding

• Truffle Language and Tool Implementations

https://docs.oracle.com/en/graalvm/enterprise/21/docs/overview/release-notes/

GraalVM Espresso
Java on Truffle

GraalVM Enterprise Edition 21.0.0 – Espresso (1)

Copyright © 2021, Oracle and/or its affiliates | 41

• A meta-circular Java bytecode interpreter for the GraalVM

• Espresso is a fully meta-circular implementation of The Java Virtual Machine

Specification, Java SE 8 and 11 Edition, written in Java, capable of running

non-trivial programs at speed

• A Java bytecode interpreter at its core, turned Just-In-Time (JIT) compiler by

leveraging Truffle and the Graal compiler on the GraalVM

• It highlights the sublime potential of the GraalVM as a platform for

implementing high-performance languages and runtimes

https://github.com/oracle/graal/tree/master/espresso

☕☕☕☕

GraalVM Enterprise Edition 21.0.0 – Espresso (2)

Copyright © 2021, Oracle and/or its affiliates | 42

• Espresso is still an early prototype, but it already passes the Java Compatibility Kit (a.k.a. the JCK or TCK

for Java SE) 8c and 11 runtime suite

• Espresso can compile itself with both javac and (the Eclipse Java Compiler) ecj

It features complete meta-circularity: it can run itself any amount of layers deep, preserving all the

capabilities (Unsafe, JNI, Reflection...) of the base layer. Running HelloWorld on three nested layers

of Espresso takes ~15 minutes

• Espresso is similar to HotSpot Express, the same codebase can run either an 8 or 11 guest JVM, on either

an 8 or 11 host JVM

• The development of Espresso happens mostly on HotSpot, but this configuration (Espresso on HotSpot)

is only supported on Linux

• Espresso's native image runs on Linux, MacOS and Windows

https://github.com/oracle/graal/tree/master/espresso

☕☕☕☕

GraalVM Enterprise Edition 21.2.0 Release Notes (3)

Copyright © 2021, Oracle and/or its affiliates | 43

• Java on Truffle
• Introduced Truffle on Java HotSwap Plugin API which allows to reload the code without the need for restarting a

running application. It is meant for framework developers to reflect changes to, e.g., annotations, framework-specific
updates such as implemented services or beans. For more details, check the documentation.

• Improved bytecode dispatch, yielding a 15-30% interpreter speed-up.

• Added a new static object model implementation that dynamically generates host classes at run time. It is
experimental at the moment.

• Added fixes to prevent crashes when external threads enter Espresso and call native code.

• Fixed crashes when running with older versions of GNU libc (<= 2.17).

• Added support for additional interoperability messages for guest objects implementing Map, Map.Entry, List, Iterator,
or Iterable.

https://docs.oracle.com/en/graalvm/enterprise/21/docs/overview/release-notes/

☕☕☕☕

Multilingual Virtual Machine

 Test your applications with GraalVM

• Documentation and downloads

 Connect your technology with GraalVM

• Integrate GraalVM into your application

GraalVM Enterprise — Summary

High-performance optimizing
Just-in-Time (JIT) compiler

Multilingual Virtual MachineAhead-of-Time (AOT)
“native image” compiler

Copyright © 2021, Oracle and/or its affiliates | 44

GraalVM Enterprise

Copyright © 2021, Oracle and/or its affiliates | 45

Wolfgang.Weigend@oracle.com

Twitter: @wolflook

Thanks!

