WRip.labs

enjoy your photo business

Adopting Java for the Graalvm.
Serverless world W

Serverless from the perspective of the AWS developer & soring

Contact

Vadym Kazulkin, ip.labs GmbH
ﬁ v.kazulkin@gmail.com

M@ https://www.linkedin.com/in/vadymkazulkin/

¥ @VKazulkin Q

Co-Organizer of Java User Group Bonn & | ,-ﬁ wid
Serverless Bonn Meetup

https://www.iplabs.de/ ' E ip ’abs
- L]

Ip.labs GmbH

(‘)0““ gura t/0/7

X-Apps

= :
https://www.iplabs.de/ m ip.’abs

Java popluarity

Rip.labs

Top programming languages, Top programming languages,
TIOBE PYPL

Java I 6596 Python T ————— 2912 %

c I 5773 % Joa F—— 1503%

Python I 57 | Javascript D ©2 %

CHt I - ﬁ C# I 725 %

c# I :: ; RHE T 609 %

Visual Basic Net D 52 % : CICH I 5o
JavaScript 24% | R . 372 %
i s RS N T

Swift D 7% : Swift D 236%

saL D 5% D f Kotlin » 62%

SHARE SHARE

Programming language popularity, 2020 by TIOBE Most popular coding languages, 2020 by PYPL

Q https://www.cleveroad.com/blog/programming-languages-ranking E ip ’a b -
- L]

AWS and Serverless

Figure 1. Magic Quadrant for Cloud Infrastructure and Platform Services

CHALLENGERS LEADERS
o

Amazon Web Services

Microsoft
e
® Googe
Alibaba Cloud
L
@ Oracee
@ O
Tencent Cloud
L
|_
=2
i
>
[S§)
(=]
|_
=
=l
2
COMPLETENESS OF VISION —_— As of August 2020 © Gartner, Inc

2020 Magic Quadrant for Cloud Infrastructure & Platform Services Vadym Kazulkin @VKazulkin , ip.labs GmbH E " ’abs
https://pages.awscloud.com/GLOBAL-multi-DL-gartner-mg-cips-2020-learn.html?pg=LWIAWS "I) : —p°—

TOOLS AND SERVICES

Which serverless vendor do you use? Which Faa$ products are you planning
to use in the next 12 months?

AWS Lambda (G ——— - &1

preFuncions QD 16% r—

Google Cloud Functions for Firebase o 1%

Azure Functions — 19%

Google Cloud Functions gl 1%

Cloudflare GEEED 8% Netify (D 19%
Vercel aa» %
Google Cloud Functions - 17%
OpenWhisk @ %
Other @ 3% Cloudflare Workers (D 12%

Knative ® 2%
Notplanningtouseany @ 4%

Kubeless I 1%

Alibaba 0 1% Other @ 2%

“State of Serverless 2020 report” https://codingsans.com/blog/serverless-trends vadym Kazulkin @VKazulkin , ip.lab: E ip 'abs
1 o = @

The Rise in Serverless

Invocation Volume Per Week

Haliday invocation spike

*,

Jan.2019 July 2019 Jan. 2020

Insights Snapshot

Serverless adoption continues to rise, with a 209% increase in average weekly
invocations over the last 12 months.

Large spikes in invocations during the holiday season reinforce the serverless use

case of auto-scaling to support peak holiday workloads across industries like retail,

media, and logistics.

2020 AWS Lambda Benchmark Report for Developers, DevOps, and Decision Makers

https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020

Invocation Growth

+209%

Average weekly invocation
volume within sample set over
the past 12 months.

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Life of the Java Serverless developer
on AWS

Dip.lahs

Java Versions Support

e Java 8 Amazon Corretto

No-cost, multiplatform, production-ready distribution

« with long-term support

« Java 11 (since 2019)

Amazon Corretto is a no-cost, multiplatform, production-ready distribution of the Open Java Development Kit
(OpenlDK). Corretto comes with long-term support that will include performance enhancements and security
fixes. Amazon runs Corretto internally on thousands of production services and Corretto is certified as
compatible with the Java SE standard. With Corretto, you can develop and run Java applications on popular

operating systems, including Linux, Windows, and macOS.

Source: https://aws.amazon.com/de/corretto/ -
o Dip.labhs

Java Ist very fast
and mature
programming
language...

... but
Serverless
adoption of Java
looks like this

What programming languages does your organization
use to develop serverless functions?

Node.js

D 77%

Python

D 1%

Go

o 1%

Java

U

NET

R

Other

O 2%

@ “State of Serverless 2020 report” https://codingsans.com/blog/serverless-trends Vadym Kazulkin @VKazulkin , ip.labs Gmbl—|| E ip ’abs
1 o @

Lambda Adoption by Runtime

.| |, 52.53%
Nededs | R 44.96%
Python

Java
.NET Core .
Insights Snapshot

+ In terms of functions, developers mostly rely on Nodejs and Python for building
Go serverless applications onLambda, with Java as the third most-used runtime. However.
with the AWS launch of Provisioned Concurrency mitigating cold start impacts and
VPC improvements, making Lambda more attractive for enterprises that require

Rl..lby isolated environments, we expect the adoption trends for Java to increase in 2020,
= The large percentage of Java invocations for o relatively small number of related
functions demonstrates a higher throughput bosed on organizations potentially
Custom focusing on data processing use cases in which cold starts could be less of anissue.in
Runtime addition, evidence suggests that companies could be lift-and-shifting applications

inthe languages they are currently using.

- Percentage of all funetions monitored
- Percentage of all invocations monitored

Time frame July-Decemibear 2018

2020 AWS Lambda Benchmark Report for Developers, DevOps, and Decision Makers Vadym Kazulkin @VKazulkin , ip.labs E ip 'abs
,ip. C °

https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020

Developers love Java and will be happy

to use It for Serverless

BN C\Windows\system32Ziemd.exe E‘Eléj

Creating AWS Lambda with Java 1/2

Author from scratch o Blueprints O Serverless Application O Basic 5ettings
Start with a simple "hello world" Choose a preconfigured template Repository
example. as a starting point for your Find and deploy serverless apps
Lambda function. published by developers,
companies, and partners on AWS. Dﬂriptiﬂl‘l
= o
= RE
Memory (MB) Info
Author from scratch o Your function is allocated CPU proportional to the memory configured.
E| 128 MB
Name
| myFirstJavaLlambda | Timeout Info
— K ‘min | 3 ' sec
| Java 8 v |
Role
Defines the permissions of your function. Note that new roles may not be available for a few minutes
after creation. Learn more about Lambda execution roles.
Choose an existing role v |
Existing role
You may use an existing role with this function. Note that the role must be assumable by Lambda and
must have Cloudwatch Logs permissions.
| service-role/lambdaRole v |

Cancel Create function

Source https://blog.runscope.com/posts/how-to-write-your-first-aws-lambda-function

Dip.labs

Creating AWS Lambda with Java 2/2

import javax.inject.Inject; ‘import java.util.function.Function;
%mport org.slf4j.LoggeP; import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import org.slf4j.LoggerFactory;

. . import org.springframework.beans.factory.annotation.Autowired;
import com.amazonaws.services.lambda.runtime.Context;

import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MonthlyInvoiceGeneratorFunction
implements Function<MonthlyInvoiceRequest, MonthlyInvoiceResponse> {

public class MonthlyInvoiceGeneratorFunction

implements RequestHandler<MonthlyInvoiceRequest, MonthlyInvoiceResponse> { private static final Logger LOG = LoggerFactory.getlLogger(MonthlyInvoiceGeneratorFunction.class);
private static final Logger LOG = LoggerFactory.getlLogger(MonthlyInvoiceGeneratorFunction.class); @Autowired
private MonthlyInvoiceGeneratorService monthlyInvoiceGeneratorService;
@Inject
private MonthlyInvoiceGeneratorService monthlyInvoiceGeneratorService; @override
public MonthlyInvoiceResponse apply(MonthlyInvoiceRequest monthlyInvoiceRequest) {
@Override
public MonthlyInvoiceResponse handleRequest(MonthlyInvoiceRequest monthlyInvoiceRequest, if (LOG.isDebugEnabled()) {
final Context context) { LOG.debug("request: {}", monthlyInvoiceReguest);
b
IT (L0G.1sDebugEnabledt)) 1 . return this.monthlyInvoiceGeneratorService.generateInvoice(monthlyInvoiceRequest);
LOG.debug("request: {}", monthlyInvoiceRequest); }

return this.monthlyInvoiceGeneratorService.generateInvoice(monthlyInvoiceRequest);

Source https://blog.runscope.com/posts/how-to-write-your-first-aws-lambda-function -
ip.labs

Challenge Number 1 with Java is a

big cold-start

Source: https://www.serverless.com/blog/keep-your-lambdas-warm T E -
ip.labs

Cold Start

THE REQUEST LIFECYCLE

Download Start new
your code container

Cold
start

AWS optimization

Bootstrap Start your
the runtime code

Warm
start

Your optimization

Bootstrap the Java Runtime Phase

AWS Lambda starts the JVM THE REQUEST LIFECYCLE

Java runtime loads and initializes

Download Start new Bootstrap Start your
your code container the runtime | code

handler class

Cold Warm

« Static initializer block of the handler class is il start

executed

AWS optimization . Your optimization

* Boosted host full CPU access up to 10 seconds

Lambda calls the handler method

* Full CPU access only approx. from 1.8 GB
“assigned” memory to the function

AWS Lambda cold start duration
per programming language
The following chart shows the typical range of cold starts in AWS Lambda, broken

down per language. The darker ranges are the most common 67% of durations, and
lighter ranges include 95%.

1.0 -
0.8 -
., 0.6 I
E L
8 L
b
0.4
0.2
0.0
JavaScript Python Go Java Ruby C# (2GB)

Typical cold start durations per language

Source: Mikhail Shilkov: ,AWS Lambda: Cold Start Duration per Language. 2020 edition” https://mikhail.io/serverless/coldstarts/aws/languag E "p ’ a b 5
— - L]

Cold start duration with Java

Below 1 second is best-case cold start duration for
very simple Lambda like HelloWorld

It goes up significantly with more complex scenarios

 Dependencies to multiple OS projects

« Clients instantiation to communicate with other (AWS)
services (e.g. DynamoDB, SNS, SQS, 3" party)

To achieve the minimal cold start duration apply all
best practices from these talk

 Worst-case cold starts can be higher than 10 and even 20
seconds

Lambda Adoption by Runtime

.| |, 52.53%
Nededs | R 44.96%
Python

Java
.NET Core .
Insights Snapshot

+ In terms of functions, developers mostly rely on Nodejs and Python for building
Go serverless applications onLambda, with Java as the third most-used runtime. However.
with the AWS launch of Provisioned Concurrency mitigating cold start impacts and
VPC improvements, making Lombda more attractive for enterprises that require

Rl..lby isolated environments, we expect the adoption trends for Java to increase in 2020,
= The large percentage of Java invocations for o relatively small number of related
functions demonstrates a higher throughput bosed on organizations potentially
Custom focusing on data processing use cases in which cold starts could be less of anissue.in
Runtime addition, evidence suggests that companies could be lift-and-shifting applications

inthe languages they are currently using.

- Percentage of all funetions monitored
- Percentage of all invocations monitored

Time frame July-Decemibear 2018

2020 AWS Lambda Benchmark Report for Developers, DevOps, and Decision Makers Vadym Kazulkin @VKazulkin , ip.labs E ip 'abs
,ip. C °

https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020

P rOVI S I O n e d New - Provisioned Concurrency for Lambda Functions
Concurrency for
Lambda Functions

by Danilo Poccia | on 02 DEC 2019 | in Auto Scaling, AWS Lambda, AWS Re:lnvent, AWS Serverless Application Model, Compute, Launch,

News, Serverless | Permalink | # Share

Voiced by Amazon Polly

It's really true that time flies, especially when you don’t have to think about servers: AWS Lambda just turned 5 years
old and the team is always looking for new ways to help customers build and run applications in an easier way.

As more mission critical applications move to serverless, customers need more control over the performance of their
applications. Today we are launching Provisioned Concurrency, a feature that keeps functions initialized and hyper-
ready to respond in double-digit milliseconds. This is ideal for implementing interactive services, such as web and mobile
backends, latency-sensitive microservices, or synchronous APIs.

Source: Yan Cui: https://lumigo.io/blog/provisioned-concurrency-the-end-of-cold-starts/ E ip ’ a b 5
L]

Lambda behind the R f .
Virtual Private w,,,* ot

Cloud (VPC) , =
- __q\

- RDS Cluster
API Gateway
P
Awebhook EEE————
o Dala Enricher Elasticsearch Cluster
Third-party
Sygterr

Webhook Processor

Third-party API

Service Poller DynamoDB

Jeremy Daly: “Mixing VPC and Non-VPC Lambda Functions for Higher Performing Microservices” i ’a n

https://www.jeremydaly.com/mixing-vpc-and-non-vpc-lambda-functions-for-higher-performing-microservices/ Vadym Ka

Lambda in VPC

As function’s execution environment AWS Cloud

Scal eS AWS Lambda Service VPC Customer owned VPC

« More network interfaces are created and
attached to the Lambda infrastructure

« The exact number of network interfaces
created and attached is a factor of your
function configuration and concurrency

« Caused additional the cold start up to
approx. 10 seconds

Q Chris Munns: "Announcing improved VPC networking for AWS Lambda functions”] E 'p. 'abs

https://aws.amazon.com/de/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-f:

Lambda in VPC Improvements:

« The network interface creation happens =1 Aws Cloud
when Lambda function is created or its AWS Lamida Service VPC Customer owned VPC
VPC settings are updated. &

« Because the network interfaces are shared :
across execution environments, only a x _’
handful of network interfaces are required % - eriaces
per function &

 Reduced additional cold start from approx.

10 seconds to below 1 second

Q Chris Munns: "Announcing improved VPC networking for AWS Lambda functions” E 'p. 'abs

https://aws.amazon.com/de/blogs/compute/announcing-improved-vpc-networking-for-aws-lambc

Improvements 1/4
« Switch to the AWS SDK 2.0 for Java

« Lower footprint and more modular

« Allows to configure HTTP Client of our choice (e.g. Java own Basic HTTP Client)

* Initialize and prime dependencies during initialization phase

* Use static initialization in the handler class

* Provide all known values (for building clients e.g.
DynamoDBClient) to avoid auto-discovery

« credential provider, region, endpoint

* Less (dependencies, classes) is more

Source: Stefano Buliani : "Best practices for AWS Lambda and Java, https://www.youtube.com/watch?v=ddglu5HL E i ’ a b 5
Sean O‘Toole ,AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/ _p U

Improvements 2/4

Avolid Reflection

e spring Guice

Or use DI Frameworks like Dagger which aren‘t reflection-based

Source: Stefano Buliani : "Best practices for AWS Lambda and Java, https://www.youtube.com/wi m ip ’ a b 5
@

Sean O‘Toole ,AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capite

Improvements 3/4

Strive for cost optimization

=
8

Dip.labs

AWS Lambda pricing model

Vadym Kazulkin @VKazulkin , ip.labs GmbH E ip, labs

Cost for Lambda

REQUEST DURATION

Request Tier

$0.20
Per 1 Mio Requests

' : -
Vadym Kazulkin @VKazulkin , ip.labs E _'p_._.____°'ab5

Duration Tier

$ 0.00001667
Per GB-Second

Dip.labs

GB-Second

=

ONE SECOND ONE GB

Example

* 1 Mio requests

« Lambda with 512MiB Requests.

 Each lambda takes 200ms » $O'20
GB-Seconds:
0.5GIB*0.2sec*1Mio $1.67

= 100 000 GB-Seconds

B . =
Vadym Kazulkin @VKazulkin , i E _'pO'abs

Cost scales
Ilnearly Wlth 0.0000010 —— Linel

e o //

128 192 156 320 384 448 512

Price per 100ms

0.0000002

0.0000000

ME

: -
Vadym Kazulkin @VKazulkin , ip.labs GmbH E 'p.'abs

Improvements 4/4
More memory = more expensive?

Basic settings

Description

Memory (MB) Info

Your function is allocated CPU proportional to the memory configured.

EI 128 MB

Timeout Info

Dip.labs

Lambda Power Tuning

 Executes different
settings in parallel

* Qutputs the optimal
setting

. o
Q Image: https://github.com/alexcasalboni/aws-lambda-power-tuning Vadym Kazulkin @VKazulkin , ip.la E 'p. 'abs

Monitor the Java Virtual Machine

Garbage Collection on AWS
Lambda

B Dasnboard Lambda GC Activity

Authentication Fullscreen Share Clone Edit

) v Search KQL (@ v Sep 3,2020 @ 00:50:46.33 - Sep 3, 2020 @ 00:56:05.95 C Refresh
Lambda Subscribed © -+ Add fiter
[are
Filters. ‘GC Activity Count by Execution Context
i

Logs 'og groups GC activities
(\S as JSON Amazon Log Group
— oy — Cognito W o -
Your Java Amazon Log transformation r,n / B:‘TW
application CloudWatch Logs Lambda function h Browser and

©

on Lambda Kibana dashboard | # ;
Amazon Elasticsearch i fenestamnp ’
Service e r— ——

. 2,500

~: 4,480

3 £ 1000 3 GCDuration (ms)
4 Vv 3
A 00:51:30 00:52:00 00:52:30 00:53:00 0055330 Q05400 00:54:30 005500 00:55:30 005600 63,377.258

Timestamp ’ -

® Heap size (max) @ Heap before GC (m... @ Heap after GC (max) @ GC duration (sum)

Source: Steffen Grunwald ,Monitoring the Java Virtual Machine Garbage Collection on AWS Lambda”®

&=
https://aws.amazon.com/de/blogs/architecture/field-notes-monitoring-the-java-virtual-machine-garbage-collection-on-aws- Iam E _,p" abs

Cost optimization

« Java is well optimized for long running server applications
« High startup times

« High memory utilization

And both memory and execution time are cost dimensions,
when using Serverless in the cloud

Dip.lahs

GraalVM enters the scene

GraalVM.

. |

Dip.labs

Project Metropolis

Goals:

Low footprint ahead-of-time mode for JVM-based languages
High performance for all languages

Convenient language interoperability and polyglot tooling

a -
Source: ,Everything you need to know about GraalVM by Oleg Selajev & Thomas Wuerthinger” https://www.youtube.com/watch?v: m _'p.’abs

Community Edition

GraalVM Community is available for free for
evaluation, development and production use. It is
built from the GraalVM sources available on
GitHub. We provide pre-built binaries for Linux,
macOS X, and Windows platforms on x86 64-bit

systems. Windows support is experimental.

DOWNLOAD FROM GITHUE

LICENSE

- Open Source Licenses
- Free for development and production use

BENEFITS

Open-source license

- Free community support via public channels
- Presence of all enterprise components

- Bug fixes and enhancements

Enterprise Edition

GraalVM Enterprise provides additional performance,
security, and scalability relevant for running applications in
production. It is free for evaluation uses and available for
download from the Oracle Technology Network. We
provide binaries for Linux, macOS X, and Windows
platforms on x86 64-bit systems. Windows support is

experimental.

DOWNLOAD FROM OTN

LICENSE

- Oracle Master License Agreement
- Free for evaluation and non-production use
- Contact us for commercial use and support options

BENEFITS

- Faster performance and smaller footprint
- Enhanced security features

- Managed capabilities for native code

+ Premier 24x7x365 support via MOS

Rip.lahs

GraalVM
Architecture

GraalVM Architecture

Substrate VM

Java HotSpot VM

Sources: Practical Partial Evaluation for High-Performance Dynamic Language Runtimes http://chrisseaton.com/rubytruffle/pldil7-truffle/pldid 7- -
»1he LLVM Compiler Infrastructure® https://llvm.org/ _'p.'abs

GraalVM
Architecture

GraalVM Architecture

Substrate VM

Java HotSpot VM

Sources: Practical Partial Evaluation for High-Performance Dynamic Language Runtimes http://chrisseaton.com/rubytruffle/pldil7-truffle/pldid 7- -
»1he LLVM Compiler Infrastructure® https://llvm.org/ _'p.'abs

SubstrateVM

Static Analysis Ahead-of-Time

Compilation

T

All Java classes from Reachable methods, Application running
Your application, JDK, fields, and classes without dependency on JDK
and Substrate VM and without Java class loading

Source: Oleg Selajev, Thomas Wuerthinger, Oracle: “Deep dive into using GraalVM for Java and JavaScript”

https://www.youtube.com/watch?v=a-XEZobXspo E ip ' a bs
. L J AL A I & 4

GraalVM and SubstrateVM

« Precompile core parts of application, but still allow extensibility!

Graal VM on HotSpot Graal VM on SubstrateVM

Source: Oleg Selajev, Oracle : “Run Code in Any Language Anywhere with GraalVM” https://www.youtube.com/watch?v=JoD '.‘ yYN

Qip.labs

GraalVM on SubstrateVM
A game changer for Java & Serverless?

Java Function compiled into a native executable using
GraalVM on SubstrateVM reduces

« “cold start” times
* memory footprint

by order of magnitude compared to running on JVM.

And both memory and execution time are cost dimensions,
when using Serverless in the cloud

GraalVM on SubstrateVM
A game changer for Java & Serverless?

Current challenges with native executable using GraalVM :

 Most Cloud Providers (AWS) doesn’t provide GraalVM as Java
Runtime out of the box, only Open JDK (e.g. AWS provides
Corretto)

« Some Cloud Providers (e.g. AWS) provide Custom Runtime Option

Lambda Layers
& Lambda
Runtime API

New for AWS Lambda - Use Any Programming Language and Share
Common Components

by Danilo Poccia | on 29 NOV 2018 | in AWS Lambda, Compute, Launch, News, Serverless, Top Posts* | Permalink | # Comments | #* Share

Voiced by Amazon Polly

I remember the excitement when AWS Lambda was announced in 2014! Four years on, customers are using Lambda
functions for many different use cases. For example, iRobot is using AWS Lambda to provide compute services for
their Roomba robotic vacuum cleaners, Fannie Mae to run Monte Carlo simulations for millions of mortgages, Bustle

to serve billions of requests for their digital content.
Today, we are introducing two new features that are going to make serverless development even easier:

» Lambda Layers, a way to centrally manage code and data that is shared across multiple functions.
« Lambda Runtime API, a simple interface to use any programming language, or a specific language version, for
developing your functions.

Dip.labs

Custom Lambda Runtimes

Custom AWS Lambda runtimes

You can implement an AWS Lambda runtime in any programming language. A runtime is a program that runs a Lambda function's handler method when the function is invoked. You can include a runtime in your

function's deployment package in the form of an executable file named bootstrap.

A runtime is responsible for running the function’s setup code, reading the handler name from an environment variable, and reading invocation events from the Lambda runtime API. The runtime passes the
event data to the function handler, and posts the response from the handler back to Lambda.

Your custom runtime runs in the standard Lambda execution environment. It can be a shell script, a script in a language that's included in Amazon Linux, or a binary executable file that's compiled in Amazon
Linux.

To get started with custom runtimes, see Tutorial — Publishing a custom runtime. You can also explore a custom runtime implemented in C++ at awslabs/aws-lambda-cpp & on GitHub.

Topics

& Using a custom runtime

. éBuilding a custom runtime§

Using a custom runtime

To use a custom runtime, set your function’s runtime to provided. The runtime can be included in your function’s deployment package, or in a layer.

Example function.zip

|— bootstrap
F— function.sh

If there's a file named bootstrap in your deployment package, Lambda executes that file. If not, Lambda looks for a runtime in the function's layers. If the bootstrap file isn't found or isn't executable, your
function returns an error upon invocation.

| Dip.labs

GraalvVM Complitation Modes

= Javar
g scala 929 K Kotlin

j IT V M it AOT

java MyMainClass native-image MyMainClass
JDK. ./mymainclass

Source: ,Everything you need tc

Startup Speed

Low Memory e
Footprint

\

Small Pac

AOT vs JIT

Peak Throughput

|

kaging

Latency

GraalVM Profile-Guided Optimizations

Profile-Guided Optimizations

GraalVM Enterprise allows to apply profile-guided optimizations (PGO) for additional
performance gain and higher throughput of native images. With PGO you can collect the
profiling data in advance and then feed it to the native-image builder, which will use this

information to optimize the performance of the resulting binary.

Note: This feature is available with GraalVM Enterprise only.

One approach is to gather the execution profiles at one run and then use them to optimize
subsequent compilation(s). In other words, you create a native image with the --pgo-
instrument option to collect the profile information. The --pgo-instrument builds an
instrumented native image with profile-guided optimization data collected of AOT compiled
code in the default.iprof file, if nothing else is specified. Then you run an example program,
saving the result in default.iprof. Finally, you create a second native image with --pgo
profile.iprof flag that should be significantly faster. You can collect multiple profile files

and add them to the image build.

Source: ,https://www.graalvm.org/reference-manual/native-image/PGO”

Dip.labs

Support of GraalVM native images in Frameworks

Spring Framework: working toward GraalVM native image support
without requiring additional configuration or workaround is one of the
themes of upcoming Spring Framework 5.3

Spring Boot: Ongoing work on experimental Spring Graal Native
project. Probably ready for the 2.4 release

Quarkus: a Kubernetes Native Java framework developed by Red Hat
tailored for GraalVM and HotSpot, crafted from best-of-breed Java
libraries and standards.

Micronaut: a modern, JVM-based, full-stack framework for building
modular, easily testable microservice and serverless applications.

Steps to deploy to AWS

* Installation prerequisites
« Framework of your choice (Micronaut, Quarkus, Spring)
« Java8orlil
« Apache Maven or Gradle

« AWS CLI and AWS SAM CLlI (for local testing)

« Build Linux executable of your application with GraalVM native-image

* Deploy Linux executable as AWS Lambda Custom Runtime

Example function.zi

« Function.zip with bootstrap Linux executable

f— bootstrap
{— function.sh

Source: https://github.com/awslabs/aws-serverless-java-container/tree/master/sam ples/micronaut/pet-store4 - -
ip.labs

AWS Lambda Deployment of Custom Runtime with SAM

AWSTemplateFormatVersion: "2810-89-89°
Transform: AWS::Serverless-2816-18-31
Description: AWS Serverless Micronaut API - graal.spring.demo::graal-spring-demo
Globals:
Api:
EndpointConfiguration: REGIONAL
Resources:
GraalVMApiService:
Type: AWS::Serverless::Function

Properties:

Handler: not.used.in.provided.runtime
Runtime: provided

CodelUri: native-image/function.zip

MemorySize: 512
Policies: AWSLambdaBasicExecutionRole
Tracing: Active
Timeout: 15
Events:
GetResource:
Type: Api
Properties:
Path: /{proxy+}
Method: any

Source: https://github.com/awslabs/aws-serverless-java-container/tree/master/samples/micronaut/pet-store

Dip.labs

Micronaut Framework

.'_-‘-:‘.j:l:.:'. :::::::::::::

Rip.labs

AWS Lambda with Micronaut Framework

import java.util.function.Function;
import javax.inject.Inject;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import io.micronaut.function.FunctionBean;

L@FunctionBean("monthly-invoice-generator”)

public class MonthlyInvoiceGeneratorFunction
implements Function<MonthlyInvoiceRequest, MonthlyInvoiceResponse> {

private static final Logger LOG = LoggerFactory.getlLogger(MonthlyInvoiceGeneratorFunction.class);

@Inject
private MonthlyInvoiceGeneratorService monthlyInvoiceGeneratorService;

@0verride
public MonthlyInvoiceResponse apply(MonthlyInvoiceRequest monthlyInvoiceRequest) {

if (LOG.isDebugEnabled()) {
LOG.debug("request: {}", monthlyInvoiceRequest);

}

return this.monthlyInvoiceGeneratorService.generateInvoice(monthlyInvoiceRequest);

Rip.labs

Testing AWS Lambda with Micronaut Framework

. import static org.junit.jupiter.api.Assertions.assertEquals;
‘import io.micronaut.function.client.FunctionClient;[] P g-J Jup P q

import javax.inject.Inject;
l@FunctionClient . o
public intertace MonthlyInvoiceGeneratorClient { import org.Junit.jupiter.api.Test;

import io.micronaut.test.annotation.MicronautTest;

@Named("monthly-invoice-generator")

Single<MonthlyInvoiceR > apply(@Body MonthlyInvoiceR t t); Jlicronautiest
1nge<tion y=nvoiceresponse> app y(@ ody Ton yInvoicerequest reques) public class MonthlyInvoiceGeneratorFunctionTest {

1 @Inject
MonthlyInvoiceGeneratorClient client;

@Test

public void testMonthlyInvoiceFunction() throws Exception {
MonthlyInvoiceRequest monthlyInvoiceRequest = new MonthlyInvoiceRequest(9,2012, 123556);
assertEquals(5@.5, client.apply(monthlyInvoiceRequest).blockingGet().getInvoiceAmount());

Rip.labs

Micronaut Additional Features

 Custom Validators
 AWS API Gateway integration

« Spring annotation processor available

dependencies { dependencies {

- T = — . = - "
annotationProcessor platform("io.micronaut:micronaut-bom:$micronautVersion™) annotationProcessor platform("io.micronaut:micronaut-bom:$micronautVersion™)

= "> - - - - n
annotationProcessor "io.micronaut:micronaut-inject-java" annotat%DnPrDcessor %D.m%cronaut.m%cronaut grgal)
annotationProcessor "io.micronaut:micronaut-validation" annotationProcessor "io.micronaut:micronaut-inject-java"
annotationProcessor "io.micronaut:micronaut-graal® annotationProcessor "io micronaut-micronaut-validation”

- we - - — _ = _ "
implementation platform("io.micronaut:micronaut-bom:$micronautVersion™) a""Dtat%D"P"DCESSD” %D.m%cronaut.spr%ng.m%cronaut spring boot)
implementation "io.micronaut:micronaut-inject"” annotationProcessor "io.micronaut.spring:micronaut-spring-boot-annotation”
implementation "io.micronaut:micronaut-validation™ annotationProcessor "io.micronaut.spring:micronaut-spring-web-annotation”

i 3 "y 3 -3 _ Fmat implementation plattorm(1o.micronaut:micronaut-bom:$micronautVersion
- - T = — _ _ = "
implementation "io.micronaut:micronaut-function-aws"™ implementation "io.micronaut:micronaut-http-client

implementation "io.micronaut:micronaut-inject”

implementation "io.micronaut:micronaut-validation”

implementation "io.micronaut:micronaut-runtime”

Source: Stefano Buliani ; "Best practices for AWS Lambda and Java, https://www.youtube.com/watch?v=ddglu5HLwg8 m ip ’ a b 5
L]

Build GraalVM Native Image with Micronaut Framework

fusr/lib/graalvm/bin/native-image -H:+TraceClassInitialization --initialize-at-build-time=reactor.core.publisher.Mono
--initialize-at-build-time=reactor.core.publisher.Flux --no-fallback --no-server -cp myapplication.jar

'(—' - C @ ‘@ & https://github.com/micronaut-projects/micronaut-maven-plugin/issues/32

& micronaut-projects / micronaut-maven-plugin

<> Code Q) Issues 4 {7 Pull requests (*) Actions ["1] Projects [wiki © Security [~ Insights

Implement GraalVM native image packaging #32
alvarosanchez opened this issue 19 days ago - 0 comments

Dip.lahs

Quarkus

Dip.labs

AWS Lambda with Quarkus Framework

import javax.inject.Inject;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.amazonaws.services.lambda.runtime.Context;

import com.amazonaws.services.lambda.runtime.RequestHandler;

ublic class MonthlyInvoiceGeneratorFunction
implements RequestHandler<MonthlyInvoiceRequest, MonthlyInvoiceResponse> {

private static final Logger LOG = LoggerFactory.getLogger(MonthlyInvoiceGeneratorFunction.class);

@Inject
private MonthlyInvoiceGeneratorService monthlyInvoiceGeneratorService;

@Ooverride
public MonthlyInvoiceResponse handleRequest(MonthlyInvoiceRequest monthlyInvoiceRequest,
final Context context) {

if (LOG.isDebugEnabled()) {
LOG.debug("request: {}", monthlyInvoiceRequest);

h

return this.monthlyInvoiceGeneratorService.generateInvoice(monthlyInvoiceRequest);

Dip.labs

Testing AWS Lambda with Quarkus Framework

import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;

import io.quarkus.amazon.lambda.test.LambdaClient;
import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest
public class MonthlyInvoiceGeneratorFunctionTest {

@Test

public void testMonthlyInvoiceFunction() throws Exception {
MonthlyInvoiceRequest monthlyInvoiceRequest = new MonthlyInvoiceRequest(9,2012, 123556);
MonthlyInvoiceResponse monthlyInvoiceResponse =

LambdaClient.invoke(MonthlyInvoiceResponse.class, monthlyInvoiceRequest);|

assertEduaLs(SB.S, monthlyInvoiceResponse.getInvoiceAmount());

Dip.labs

Build GraalVM Native Image with Quarkus Framework

<profile> .

i domatives/ids mvn —Pnative package
<activation»

<property>

<name>native</name>

</property>
<factivation>
<build>

<plugins>

<plugin>
<groupIld>io.quarkus</groupIds>

<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus.version}</version>
<executions>
<executions
goals>
<goal>native-image</goal>
</goals>
<configuration>
<enableHttpUrlHandler>true</enableHttpUrlHandler:>
</configuration>
</execution>
</executions>

</plugin>

</plugins>
</builds>

</profile>

Dip.labs

Quarkus Additional Features

* Website for creating the App
 AWS API Gateway integration

* Funqgy

Source: Stefano Buliani : "Best practices for AWS Lambda and Java, https://www.youtube.com/watch?v=ddglu5HLwg8 . - E "p ' b
. AJdINS

Quarkus Fanqgy

QUARKUS - FUNQY

Quarkus Fungy is part of Quarkus's serverless strategy and aims to provide a portable Java API
to write functions deployable to various FaaS environments like AWS Lambda, Azure Functions,

Knative, and Knative Events (Cloud Events). It is also usable as a standalone service.

Because Funqy is an abstraction that spans multiple different cloud/function providers and
protocols it has to be a very simple APl and thus, might not have all the features you are used
to in other remoting abstractions. A nice side effect though is that Funqy is as optimized and as
small as possible. This means that because Funqy sacrifices a little bit on flexibility, you'll get a
framework that has little to no overhead.

Source: https://quarkus.io/guides/funqy | E -
ip.labs

Quarkus-Fanqy AWS
Serverless Support

« AWS Lambda
« AWS API Gateway

Rip.labs

Spring (Boot) Framework

&) spring

Dip.labs

Spring GraalVM Native Project

This project goal is to incubate support for building Spring Boot applications as GraalVM native images.

Watch The Path Towards Spring Boot Native Applications SpringOne 2020 talk recording for more details:

® spring-graalvm-native-feature : this module is a GraalVM feature. It is a kind of plugin for the native-image

It is mainly composed of:

compilation process (which creates the native-image from the built class files). The feature participates in the
compilation lifecycle, being invoked at different compilation stages to offer extra information about the

application to aid in the image construction.

Rip.labs

AWS Lambda with Spring Framework
using Spring Graal Native and Spring Cloud Functions

‘import java.util.function.Function;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;

public class MonthlylInvolceGeneratorfunction
implements Function<MonthlyInvoiceRequest, MonthlyInvoiceResponse> {

private static final Logger LOG = LoggerFactory.getLogger(MonthlyInvoiceGeneratorFunction.class);

@Autowired
private MonthlyInvoiceGeneratorService monthlyInvoiceGeneratorService;

@Override
ublic MonthlylInvoiceResponse apply(MonthlylnvoilceRequest monthlylnvoilceRequest) 1

if (LOG.isDebugEnabled()) {
LOG.debug("request: {}", monthlyInvoiceRequest);

h

return this.monthlyInvoiceGeneratorService.generateInvoice(monthlyInvoiceRequest);

Dip.labs

Bean Registration with Spring Framework
using Spring Graal Native and Spring Cloud Functions

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.cloud.function.context.FunctionRegistration;

import org.springframework.cloud.function.context.FunctionType;

import org.springframework.cloud.function.context.FunctionalSpringApplication;
import org.springframework.context.ApplicationContextInitializer;

import org.springframework.context.support.GenericApplicationContext;

@SpringBootApplication(proxyBeanMethods = false)
public class DemoApplication implements ApplicationContextInitializer<GenericApplicationContext> {

public static void main(String[] args) {
FunctionalSpringApplication.run(DemoApplication.class, args);

h

@0Override
public void initialize(GenericApplicationContext context) {

context.registerBean("monthlyInvoiceGenerator"”, FunctionRegistration.class,
() -> new FunctionRegistration<> (new MonthlyInvoiceGeneratorFunction()).
type(FunctionType.from(MonthlyInvoiceRequest.class).

to(MonthlyInvoiceResponse.class)));

Rip.labs

Build GraalVM Native Image with Spring Framework

<profile> .
senvei | MVN —Pnative package
<builds
splugins>
<plugin>
<groupfd>org.graalvm.nativeimage([groupfd)
<artifactId»native-image-maven-plugin</artifactId>
<version>Z@d.2_@</version>
<copfisuration>
<mainClass>com.example.demo.DemoApplication</mainClass>
<buildArgs>-J-Xmx4G -H:+TraceClassInitialization -H:+ReportExceptionStackTraces
-Dspring.native.remove-unused-autoconfig=true -Dspring.native.remove-yaml-support=true
</buildArgs>
<additionalBuildArgs>--delay-class-initialization-to-runtime=sun.nio.ch.WindowsAsynchronousFileChannelImpl
</additionalBuildArgs>
<1imagelflame>3{project.artitactld </ 1magellame?
</configuration>
<executions>
<executions
<goals>
<goalrnative-image</goal>
</egoals>
<Ehase>EackaEe<Iphase>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>

Dip.lahs

Framework Comparison
* Project Initializer

* Programming Model

« Database Support

Test Support

Native Image
« Native image size
« Startup time

 Heap size

Source: ,Battle Of The Microservice Frameworks: Micronaut versus Quarkus edition! by Michel Schudel* https://www.youtube.com/watc " -
ip.labs

»Micronaut 2.0 vs Quarkus 1.3.1 vs Spring Boot 2.3 Performance on JDK 14 https://www.youtube.com/watch?v=rJFgdFls_k8

Conclusion
« GraalVM and Frameworks are really powerful with a lot of potential

« But in combination with Native Image currently not without challenges
« AWS Lambda Custom runtime requires Linux executable only
* Windows and Mac developers may only build Linux executable via Docker

« plenty of 'No instances of ... are allowed in the image heap’and other errors when
building a native image

» Lots of experimentation with additional build arguments like “initialize-at-runtime” or
“delay-class-initialization-to-runtime” required

 Once again: Less (dependencies, classes) is more

« AWS Lambda function should be small and shouldn’t have many dependencies

Source: ,,https://stackoverflow.com/questions/63328298/how-do-you-debug-a—no-instances-of-are-allo({ve

Rip.labs

Try 1t yourselves

e Micronaut

« https://github.com/micronaut-guides/micronaut-function-aws-lambda

 Quarkus
« https://github.com/JosemyDuarte/quarkus-terraform-lambda-demo/tree/dynamo-terraform
« Spring Boot

« https://github.com/spring-projects-experimental/spring-graalvm-native/tree/master/spring-
graalvm-native-samples/function-aws

Misc

» https://github.com/awslabs/aws-serverless-java-container/tree/master/samples

Dip.lahs

Project Leyden

Call for Discussion: New Project: Leyden

mark.reinhold at oracle.com mark.reinhold at oracle.com
Mon Apr 27 16:38:55 UTC 2020

e Previous message: Type-parameterized complement to Object.equals(Object)
e Next message: Call for Discussion: New Project: Leyden
e Messages sorted by: [date | [thread | [subject] [author]

I hereby invite discussion of a new Project, Leyden, whose primary goal
will be to address the long-term pain points of Java’s slow startup time,
slow time to peak performance, and large footprint.

Leyden will address these pain points by introducing a concept of static
images_ to the Java Platform, and to the JDE.

- A static image 15 a standalone program, derived from an application,
which runs that application -- and no other.

- A statlc image 1s a closed world: It cannot load classes from outside
the image, nor can 1t spin new bytecodes at run time.

These two constraints enable build-time analyses that can remove unused
classes and identify class initializers which can be run at build time,
thereby reducing both the size of the image and its startup time. These
constraints also esnable aggressive ahead-of-time compilation, thereby
reducing the image’s time to peak performance.

Source: https://mail.openjdk.java.net/pipermail/discuss/2020-April/005429.html

Rip.labs

B v

Thank You!

www.iplabs.de | 0 ip.labs

