
© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

Patterns and Best Practices 
for Dynamic OSGi Applications

Kai Tödter, Siemens Corporate Technology
Gerd Wütherich, Freelancer
Martin Lippert, akquinet it-agile GmbH



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Dynamic OSGi applications

» Basics
» Package dependencies

» Service dependencies

» OSGi Design Techniques
» The Whiteboard Pattern

» The Extender Pattern

» Conclusion

Agenda

2



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

Java Standard Edition:

» Linear global class path

» Only one version of every library per application

» No component nor module concept above the classes level

» Totally different deployment models for different kind of 
environments

Java Enterprise Edition:

» Hot deployment possible, but requires special deployment 
types (e.g. WARs, RARs, EARs)

"Classic" Java applications

3



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

And the result is…

4



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» “OSGi - the dynamic module system for Java”

» You can define:
» Bundles (aka Modules)

» Dependencies

» Visibilities

» This is a huge step forward !!!

Now we have OSGi

5



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

And OSGi is dynamic!

6



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

Dynamic Swing OSGi Demo

7



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» The PM Demo project home page is:
http://max-server.myftp.org/trac/pm

» There you find
» Wiki with some documentation
» Anonymous Subversion access
» Trac issue tracking

» Licenses
» All PM project sources are licensed under EPL
» Swing Application Framework (JSR 296) implementation is licensed 

under LGPL
» Swing Worker is licensed under LGPL
» The nice icons from FamFamFam are licensed under the Creative 

Commons Attribution 2.5 License. 

How to get the Demo?

8

http://max-server.myftp.org/trac/pm�
http://www.eclipse.org/legal/epl-v10.html�
https://appframework.dev.java.net/�
http://www.gnu.org/copyleft/lesser.html�
https://swingworker.dev.java.net/�
http://www.gnu.org/copyleft/lesser.html�
http://www.famfamfam.com/lab/icons/silk/�
http://creativecommons.org/licenses/by/2.5/�
http://creativecommons.org/licenses/by/2.5/�


© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» "Wow - OSGi does dynamic install, uninstall and update of 
bundles, this is cool…"
» I don’t need to take care of dynamics anymore

» I don’t need to think about this at all

» Everything is done automatically under the hood

» Objects are changed/migrated and references to objects are managed 
all automatically

» Huge bulk of magic

» This is all wrong!!!

The first impressions

9



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

If its all magic, why this?

10



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» OSGi controls the lifecycle of bundles
» It allows you to install, uninstall and update bundles at runtime

» It gives you feedback on all those actions

» But it does not change any objects or references for you
» "No magic"

» OSGi gives you the power to implement dynamic applications

» How you use this power is up to you

The basic idea

11



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Bundles have dependencies, e.g. package or service 
dependencies

» Dependencies have to be handled with respect to the dynamic 
behavior!

What is the problem?

12



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Dynamic OSGi applications

» Basics

» Package dependencies
» Service dependencies

» OSGi Design Techniques
» The Whiteboard Pattern

» The Extender Pattern

» Conclusion

Agenda

13



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License14

System overview



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Export of packages with Export-Package

» Import of packages via Import-Package or Require-Bundle

Package Dependencies

15



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

Digression: Bundle-Lifecycle

16



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

Installing

17

» Makes a Bundle persistently available in the OSGi Framework
» The Bundle is assigned a unique Bundle identifier (long)

» The Bundle State is set to INSTALLED

» The Bundle will remain in the OSGi Framework until explicitly 
uninstalled



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Wires bundles by matching imports to exports 

» Resolving may occur eagerly (after installation) or lazily

» There is no API for resolving

» After resolving -> Bundle is in state RESOLVED

Resolving

18



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» … removes a Bundle from the OSGi Framework

» The Bundle State is set to UNINSTALLED

» If the Bundle is an exporter: Existing wires will remain until
» the importers are refreshed or 

» the OSGi Framework is restarted

Uninstall

19



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Update:
» Reads in the Bundle again

» If the Bundle is an exporter: Existing wires will remain until the 
importers are refreshed or the OSGi Framework is restarted

» Refresh:
» All the bundle dependencies will be resolved again

Update and Refresh

20



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Update or uninstall of bundles can lead to stale package 
references

» Refresh -> restart of the bundles

What does this mean?

21



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Just modularizing into bundles with clearly defined package 
dependencies is not enough!

» We need to think about dynamics while building the system

» We need to think even more about dependencies

» We need to re-think typical well-known designs
» More will follow

We need to re-think designs

22



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Only import packages that are really used/needed

» Use Import-Package rather Require-Bundle

» Only use Require-Bundle when it comes to split-packages
» This is the unfortunately the case in many bundles of the Eclipse 

platform!

» -> Reduce coupling

Best Practices: Package Dependencies

23



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Dynamic OSGi applications

» Basics
» Package dependencies

» Service dependencies

» OSGi Design Techniques
» The Whiteboard Pattern

» The Extender Pattern

» Conclusion

Agenda

24



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» One way to reduce coupling
» Split interface and implementation into different bundles

» Lookup implementation(s) dynamically

Service dependencies

25



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» But be careful:
» If you lookup a service implementation, you get the direct reference to 

that object

» If the implementing bundle goes away, you need to be careful not to 
keep this object referenced

» ServiceListener / ServiceTracker help you
» ServiceListener: calls you back if something changes

» ServiceTracker: listens to service listener events for you (less code than 
using service listeners manually)

ServiceListener / ServiceTracker

26



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Declarative Services
» Part of the OSGi specification, declarative description of services with XML

» Spring Dynamic Modules
» Spring goes dynamic with help of OSGi

» http://www.springframework.org/osgi

» iPojo
» “Original” DI framework for OSGi

» http://ipojo.org

» Guice - Peaberry
» Guice: Performant, lightweight DI Framework

» Peaberry: Extension of Guice for OSGi

» http://code.google.com/p/peaberry/

» http://code.google.com/p/google-guice/

Declarative (and other) Approaches

27



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Use a ServiceTracker
» Don’t do all the service getting manually

» Service tracker help you with dynamically coming and going services

» Better: Use declarative approaches!
» Either DS or Spring DM

» Both help you with service dependencies and dependency injection

Best Practices: Services

28



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Dynamic OSGi applications

» Basics
» Package dependencies

» Service dependencies

» OSGi Design Techniques

» The Whiteboard Pattern
» The Extender Pattern

» Conclusion

Agenda

29



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Problem: 
Often a service provides an implementation of the 
publisher/subscriber design pattern and provides methods to 
register listeners for notifications

» The OSGi service model provides a service registry with these 
notification mechanisms already!

» So:

» Don’t get a service and register as listener

» Be a service yourself and register with the OSGi service 
registry!

The Whiteboard-Pattern

30



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

Example: The Listener Pattern

31

» Clients use ApplicationService to register view and action contributions

» Client is responsible for handling dynamic behavior



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

Example: The Whiteboard Pattern

32

» Clients register view and action contributions as services

» Application manager is responsible for handling dynamic behavior



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» The Action and View contribution managers are NOT services
» Instead, they are wrapped in a DS component

» All action and view contributions are OSGi services and 
implement
» IActionContribution

» IViewContribution

» Take a look at the bundles
» com.siemens.ct.pm.application

» com.siemens.ct.pm.ui.actions.*

» com.siemens.ct.pm.ui.views.*

Whiteboard Pattern in PM Demo

33



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Dynamic OSGi applications

» Basics
» Package dependencies

» Service dependencies

» OSGi Design Techniques
» The Whiteboard Pattern

» The Extender Pattern

» Conclusion

Agenda

34



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» The extender pattern allows bundles to extend the 
functionality in a specific domain

» It uses the synchronous bundle listener

» The extender adds a bundle listener to the BundleContext

» The bundle listener overwrites 
public void bundleChanged(BundleEvent event)

» Then the listener checks the started bundle for a specific 
handler and performs some (domain)specific action

» The extender should also check all already started bundles in 
its activator

The Extender Pattern

35



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» The following example shows a demo extender

» Implemented in com.siemens.ct.pm.extender

» Registers a bundle listener

» Looks for the manifest header "Action-Contribution" in every 
bundle

» When found in a started bundle
» Parses the value as class name

» Registers the class as service implementation for
com.siemens.ct.pm.application.service.IActionContribution

» When found in a stopped bundle
» Unregisters the service

PM Demo Extender: Registering Services

36



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» Questions welcome!

» Kai Tödter

» Gerd Wütherich

» Martin Lippert

Thank you for your attention!

37


	Patterns and Best Practices �for Dynamic OSGi Applications
	Agenda
	"Classic" Java applications
	And the result is…
	Now we have OSGi
	And OSGi is dynamic!
	Dynamic Swing OSGi Demo
	How to get the Demo?
	The first impressions
	If its all magic, why this?
	The basic idea
	What is the problem?
	Agenda
	System overview
	Package Dependencies
	Digression: Bundle-Lifecycle
	Installing
	Resolving
	Uninstall
	Update and Refresh
	What does this mean?
	We need to re-think designs
	Best Practices: Package Dependencies
	Agenda
	Service dependencies
	ServiceListener / ServiceTracker
	Declarative (and other) Approaches
	Best Practices: Services
	Agenda
	The Whiteboard-Pattern
	Example: The Listener Pattern
	Example: The Whiteboard Pattern
	Whiteboard Pattern in PM Demo
	Agenda
	The Extender Pattern
	PM Demo Extender: Registering Services
	Thank you for your attention!

