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Java Standard Edition:

» Linear global class path

» Only one version of every library per application

» No component nor module concept above the classes level

» Totally different deployment models for different kind of 
environments

Java Enterprise Edition:

» Hot deployment possible, but requires special deployment 
types (e.g. WARs, RARs, EARs)

"Classic" Java applications
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And the result is…

4



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» “OSGi - the dynamic module system for Java”

» You can define:
» Bundles (aka Modules)

» Dependencies

» Visibilities

» This is a huge step forward !!!

Now we have OSGi
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And OSGi is dynamic!
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Dynamic Swing OSGi Demo
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» The PM Demo project home page is:
http://max-server.myftp.org/trac/pm

» There you find
» Wiki with some documentation
» Anonymous Subversion access
» Trac issue tracking

» Licenses
» All PM project sources are licensed under EPL
» Swing Application Framework (JSR 296) implementation is licensed 

under LGPL
» Swing Worker is licensed under LGPL
» The nice icons from FamFamFam are licensed under the Creative 

Commons Attribution 2.5 License. 

How to get the Demo?

8

http://max-server.myftp.org/trac/pm�
http://www.eclipse.org/legal/epl-v10.html�
https://appframework.dev.java.net/�
http://www.gnu.org/copyleft/lesser.html�
https://swingworker.dev.java.net/�
http://www.gnu.org/copyleft/lesser.html�
http://www.famfamfam.com/lab/icons/silk/�
http://creativecommons.org/licenses/by/2.5/�
http://creativecommons.org/licenses/by/2.5/�


© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» "Wow - OSGi does dynamic install, uninstall and update of 
bundles, this is cool…"
» I don’t need to take care of dynamics anymore

» I don’t need to think about this at all

» Everything is done automatically under the hood

» Objects are changed/migrated and references to objects are managed 
all automatically

» Huge bulk of magic

» This is all wrong!!!

The first impressions
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If its all magic, why this?
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» OSGi controls the lifecycle of bundles
» It allows you to install, uninstall and update bundles at runtime

» It gives you feedback on all those actions

» But it does not change any objects or references for you
» "No magic"

» OSGi gives you the power to implement dynamic applications

» How you use this power is up to you

The basic idea
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» Bundles have dependencies, e.g. package or service 
dependencies

» Dependencies have to be handled with respect to the dynamic 
behavior!

What is the problem?
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System overview
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» Export of packages with Export-Package

» Import of packages via Import-Package or Require-Bundle

Package Dependencies
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Digression: Bundle-Lifecycle
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Installing
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» Makes a Bundle persistently available in the OSGi Framework
» The Bundle is assigned a unique Bundle identifier (long)

» The Bundle State is set to INSTALLED

» The Bundle will remain in the OSGi Framework until explicitly 
uninstalled
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» Wires bundles by matching imports to exports 

» Resolving may occur eagerly (after installation) or lazily

» There is no API for resolving

» After resolving -> Bundle is in state RESOLVED

Resolving

18



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» … removes a Bundle from the OSGi Framework

» The Bundle State is set to UNINSTALLED

» If the Bundle is an exporter: Existing wires will remain until
» the importers are refreshed or 

» the OSGi Framework is restarted

Uninstall
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» Update:
» Reads in the Bundle again

» If the Bundle is an exporter: Existing wires will remain until the 
importers are refreshed or the OSGi Framework is restarted

» Refresh:
» All the bundle dependencies will be resolved again

Update and Refresh
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» Update or uninstall of bundles can lead to stale package 
references

» Refresh -> restart of the bundles

What does this mean?
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» Just modularizing into bundles with clearly defined package 
dependencies is not enough!

» We need to think about dynamics while building the system

» We need to think even more about dependencies

» We need to re-think typical well-known designs
» More will follow

We need to re-think designs
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» Only import packages that are really used/needed

» Use Import-Package rather Require-Bundle

» Only use Require-Bundle when it comes to split-packages
» This is the unfortunately the case in many bundles of the Eclipse 

platform!

» -> Reduce coupling

Best Practices: Package Dependencies
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» One way to reduce coupling
» Split interface and implementation into different bundles

» Lookup implementation(s) dynamically

Service dependencies
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» But be careful:
» If you lookup a service implementation, you get the direct reference to 

that object

» If the implementing bundle goes away, you need to be careful not to 
keep this object referenced

» ServiceListener / ServiceTracker help you
» ServiceListener: calls you back if something changes

» ServiceTracker: listens to service listener events for you (less code than 
using service listeners manually)

ServiceListener / ServiceTracker
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» Declarative Services
» Part of the OSGi specification, declarative description of services with XML

» Spring Dynamic Modules
» Spring goes dynamic with help of OSGi

» http://www.springframework.org/osgi

» iPojo
» “Original” DI framework for OSGi

» http://ipojo.org

» Guice - Peaberry
» Guice: Performant, lightweight DI Framework

» Peaberry: Extension of Guice for OSGi

» http://code.google.com/p/peaberry/

» http://code.google.com/p/google-guice/

Declarative (and other) Approaches
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» Use a ServiceTracker
» Don’t do all the service getting manually

» Service tracker help you with dynamically coming and going services

» Better: Use declarative approaches!
» Either DS or Spring DM

» Both help you with service dependencies and dependency injection

Best Practices: Services
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» Problem: 
Often a service provides an implementation of the 
publisher/subscriber design pattern and provides methods to 
register listeners for notifications

» The OSGi service model provides a service registry with these 
notification mechanisms already!

» So:

» Don’t get a service and register as listener

» Be a service yourself and register with the OSGi service 
registry!

The Whiteboard-Pattern
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Example: The Listener Pattern
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» Clients use ApplicationService to register view and action contributions

» Client is responsible for handling dynamic behavior
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Example: The Whiteboard Pattern
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» Clients register view and action contributions as services

» Application manager is responsible for handling dynamic behavior
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» The Action and View contribution managers are NOT services
» Instead, they are wrapped in a DS component

» All action and view contributions are OSGi services and 
implement
» IActionContribution

» IViewContribution

» Take a look at the bundles
» com.siemens.ct.pm.application

» com.siemens.ct.pm.ui.actions.*

» com.siemens.ct.pm.ui.views.*

Whiteboard Pattern in PM Demo
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» The extender pattern allows bundles to extend the 
functionality in a specific domain

» It uses the synchronous bundle listener

» The extender adds a bundle listener to the BundleContext

» The bundle listener overwrites 
public void bundleChanged(BundleEvent event)

» Then the listener checks the started bundle for a specific 
handler and performs some (domain)specific action

» The extender should also check all already started bundles in 
its activator

The Extender Pattern

35



© Kai Tödter, Gerd Wütherich, Martin Lippert; Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Germany License

» The following example shows a demo extender

» Implemented in com.siemens.ct.pm.extender

» Registers a bundle listener

» Looks for the manifest header "Action-Contribution" in every 
bundle

» When found in a started bundle
» Parses the value as class name

» Registers the class as service implementation for
com.siemens.ct.pm.application.service.IActionContribution

» When found in a stopped bundle
» Unregisters the service

PM Demo Extender: Registering Services
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» Questions welcome!

» Kai Tödter

» Gerd Wütherich

» Martin Lippert

Thank you for your attention!
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