
Docker Who.
Small Containers
Through Time and Space
Dmitry Chuyko

2022

Liberica www.bell-sw.com
supported OpenJDK binaries

Who
we
are

Dmitry
Chuyko

ex-employers:

@dchuyko

http://bell-sw.com

OpenJDK
Contributions
LTS

Deployment

...package an
application with all of
its dependencies into
a standardized unit for
software development.

— Docker

Deploy an image. Direct
⦁ Participants

─ User/CI in Dev local or cloud
─ Hosts in the cloud

⦁ Transfer
─ Full image every time

⦁ Custom connection
⦁ Custom topology management

Host

Service Image

Deploy an image. Registry
⦁ Participants

─ User/CI in Dev local or cloud
─ Hosts in the cloud
─ Registry

⦁ User/CI in Dev local or cloud (proxy)
⦁ Cloud
⦁ Cloud SaaS
⦁ Public 3rd party SaaS

⦁ Transfer
─ All layers for a clean host
─ New layers

Host 1

Base layers

Registry

Service layers

Host N

Deploy an image. Networks

Registry

Host

Proxy

Host

Layers

Registry
3rd party

Layers

Deploy an image. Networks

Mirror

Host

Layers

Registry
3rd party

Host

Layers

Registry
SaaS

Deploy an Image. Networks

Proxy
Mirror

Host

Layers

Trusted
Registry

Layers

Public Services

On November 20, 2020,
rate limits anonymous
and free authenticated
use of Docker Hub went
into effect.

— Dockerhub

Deploy an Image. Not for free
⦁ Docker Hub Free

─ Pull rate limits since Nov 2 2020 (200 rqs / 6 hrs)

⦁ Registry
─ SaaS or 3rd party
─ Day $, GB $, GB*day $, GB out $$

⦁ Mirror
─ A running instance $
─ Maintenance / SLAs $
─ Traffic

Deploy an Image. Not for free
⦁ Traffic

─ No direct cost within VPC
─ Cross network, VPNs $$
─ Delays $
─ Machine time $

⦁ Time
─ CPU time $
─ Deployment $$
─ Downtime $$$

Smaller
containers
can help

Images are transferred over the
network across domains, so less
traffic is cheaper. At the same time,
every deployment will go faster.

The paid registry needs to contain
less volume of data, and less
data is transferred out.

She’s just bigger on the inside

Base Images
Most Dockerfiles start
from a parent image.

— Docker

Base/Parent Images

A base image has FROM scratch
in its Dockerfile.

A parent image is the one that your image is
based on. It refers to the contents of the FROM
directive in the Dockerfile. Each subsequent
declaration in the Dockerfile modifies this parent
image. Most Dockerfiles start from a parent
image rather than a base image. However, the
terms are sometimes used interchangeably.

Microservice
container
layers

App

Framework

App Libraries

OS Packages

JRE

OS

Scratch

Base

Developer voice
⦁ Aleksey Nesterov. Spring: Your next Java microframework
⦁ Vladimir Plizga. Spring Boot "fat" JAR: Thin parts of a thick artifact

Optimize Top
⦁ Select management system, use generic technics
⦁ App

─ Keep microservices micro

⦁ Framework & Libraries
─ You can choose, smaller app = wider choice
─ Also affect app part (so keep it micro)

⦁ OS Packages
─ Keep apps micro
─ Add minimal sufficient ones
─ Select OS

⦁ Correctness
⦁ Security and updates
⦁ Maintenance, tools and support

⦁ Size
⦁ Performance

Optimize Base. Selection Criteria

kubedex.com/base-images crunchtools.com/comparison-linux-container-images

https://kubedex.com/base-images/
http://crunchtools.com/comparison-linux-container-images/

OS + JDK images
⦁ Based on OS images
⦁ JDK package installation

─ Package manager
─ Package
─ Same vendor

⦁ JDK binary installation
─ Requirements
─ Compatibility

⦁ Ask your provider about testing

Optimize Base. Size
⦁ Smaller JRE

─ Lighter JVM type, proper JDK variant
─ Reduced set of modules, compressed modules

⦁ No JRE (compile app to native executable)
─ Going beyond module granularity
─ Closed world

⦁ OS
─ Small “OS” images

⦁ No OS (distroless)
─ Actually “package manager”-less

⦁ Scratch only
─ Only for simple programs

Compressed Size (across wire)
$ java -XX:+UnlockDiagnosticVMOptions …

$ vi ~/.docker/config.json

{
 "experimental": "enabled",
 "debug": true
}

$ docker manifest inspect -v openjdk

Compressed Size (across wire)
...
layers": [

{
"mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
"size": 42097812,

 "digest": "sha256:28587b6e64756a60a354301d011190fb69ea1eed25d7a5180811dab252e16a21"
},
{

"mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
"size": 13511818,

 "digest": "sha256:b1655352c888337fbd3af21c25aa26d4561a0b9b6035a8b22c9ee0c8ae9a3784"
},
{

"mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
"size": 187170401,

 "digest": "sha256:1f9646f00e96d7c315cc4e7a61c091ac85314d738b5c12f5a05566e9af31f65f"

}
]
...

232 MB

Uncompressed Size (disk)
$ docker history openjdk
IMAGE CREATED CREATED BY SIZE
ff693b5bd1bb 5 weeks ago /bin/sh -c #(nop) CMD ["jshell"] 0B
<missing> 5 weeks ago /bin/sh -c set -eux; arch="$(objdump="$(co… 321MB
<missing> 5 weeks ago /bin/sh -c #(nop) ENV JAVA_VERSION=17 0B
<missing> 5 weeks ago /bin/sh -c #(nop) ENV LANG=C.UTF-8 0B
<missing> 5 weeks ago /bin/sh -c #(nop) ENV PATH=/usr/java/openjd… 0B
<missing> 5 weeks ago /bin/sh -c #(nop) ENV JAVA_HOME=/usr/java/o… 0B
<missing> 5 weeks ago /bin/sh -c set -eux; microdnf install gzi… 39.3MB
<missing> 5 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 5 weeks ago /bin/sh -c #(nop) ADD file:ab982d6f37710c434… 111MB

$ docker images | head -n 1; docker images | grep openjdk
REPOSITORY TAG IMAGE ID CREATED SIZE
openjdk latest ff693b5bd1bb 5 weeks ago 471MB

471 MB

Pull time (100 Mbps)
$ time docker pull openjdk
...
real 0m27.990s
user 0m0.095s
sys 0m0.096s

28 s

SSD

IOPS

STORAGE

Keep 471 MB

$0.09/mo
*From internet

*From same region

BANDWIDTH

Pull 232 MB

$0*
Efficiently myocardinate

market-driven innovation via

open-source alignments.

CPU

Pull 28 s

≈$0
*Same region.

Good rate limits

Push is cheap.

REGISTRY

Keep & Seed

$0*

Deployment costs per instance. Cloud

Different region.

REGISTRY

Seed 251 MB

$0.09

Clean deployment costs. Cloud

x 0.251 GB
x 1000 deploys
x 29.5 days

= $666

Deployment costs. Cloud

x 0.251 GB
x 1k deploys = 0.25 TB

⦁ Tens of seconds for a single pull
⦁ Shared HW
⦁ Shared I/O limits
⦁ Keep old versions
⦁ On-premise / private cloud?
⦁ Elastic fleet
⦁ 10 Mbps

OS Image Wire Disk libc pkg man shell

Ubuntu 27 MB 73 MB glibc apt bash

Debian 48 MB 114 MB glibc apt bash

Debian Slim 26 MB 69 MB glibc apt bash

CenOS 71 MB 215 MB glibc yum bash

RHEL Atomic Base 31 MB 78 MB glibc microdnf bash

GCR Distroless base 7.6 MB 17 MB glibc — —

Alpine 2.7 MB 5.6 MB musl apk ash

GCR Distroless static 0.6 MB 1.8 MB — — —

OS + JDK 17 Image Wire Disk

bellsoft/liberica-openjdk-debian 131 MB 238 MB

bellsoft/liberica-openjdk-centos 147 MB 314 MB

bellsoft/liberica-openjdk-alpine 79 MB 124 MB

bellsoft/liberica-openjdk-alpine-musl 71 MB 100 MB

Liberica JDK Images
⦁ hub.docker.com/r/bellsoft

https://hub.docker.com/r/bellsoft

Pull time
$ time docker pull bellsoft/liberica-openjdk-alpine-musl:latest
...
real 0m3.957s
user 0m0.026s
sys 0m0.061s

4 s

Small containers
do help

The amount of transferred data for
OS+JDK image can be decreased
to 76 MB, overall pull time drops
many times (like 28 s → 4 s or 6 s
→ 0.8 s).

Image contents look unfamiliar.

... is a security-oriented,
lightweight Linux
distribution based on
musl libc and busybox.

— Alpine

Alpine Linux

Musl libc. At a glance
⦁ musl.libc.org
⦁ Built on top of Linux syscall API (C bindings for the OS interfaces)
⦁ Base language standard (ISO C)
⦁ POSIX + widely-agreed extensions
⦁ Lightweight (size), fast, simple, free (MIT)
⦁ Strives to be correct in the sense of standards-conformance and safety

http://musl.libc.org/

Musl libc. Key Principles
⦁ musl.libc.org/about.html
⦁ Simplicity

─ Decoupling, minimize abstractions
─ Favors simple algorithms over more complex ones
─ Readable code

⦁ Resource efficiency
─ Minimal size, low overhead, efficient static linking (Nx10kb)
─ Scalable (small stacks)

⦁ Attention to correctness
─ Defensive coding, no race conditions

⦁ Ease of deployment (single binary)
⦁ First-class support for UTF-8/multilingual text

http://musl.libc.org/about.html

Libc implementations
⦁ etalabs.net/compare_libcs.html
⦁ Note: outdated

http://www.etalabs.net/compare_libcs.html

Libc implementations

Libc implementations

Libc implementations

Libc implementations

Libc implementations

Musl libc. Key Issues
⦁ It’s different

$ cat src/hotspot/os/linux/os_linux.cpp

…
include <stdio.h>
include <unistd.h>
…

Busybox. At a glance
⦁ busybox.net
⦁ Many Unix utilities in a single executable file

─ i.e. shell commands and the shell itself

⦁ Glibc, musl (Alpine), uLibc
⦁ GPLv2
⦁ hub.docker.com/_/busybox

https://www.busybox.net/
https://hub.docker.com/_/busybox

Busybox. Key Principles
⦁ Swiss army knife, small
⦁ Implementation of the standard Linux command line tools
⦁ Smallest executable size
⦁ Simplest and cleanest implementation
⦁ Standards compliant
⦁ Minimal run-time memory usage (heap and stack)
⦁ Fast

Busybox. Key Issues
⦁ It’s different
⦁ Single executable

─ Process binary path
─ Non-modular binary

⦁ Doesn’t support environment variables
with periods in the names
─ POSIX compliant

Alpine Linux. At a glance
⦁ alpinelinux.org
⦁ Small

─ Built around musl libc and busybox
─ Small packages

⦁ Simple
─ OpenRC init system
─ apk package manager

⦁ Secure
─ Position Independent Executables (PIE) binaries

with stack smashing protection

https://alpinelinux.org/

Alpine Linux. Key Issues
⦁ It’s different
⦁ Not desktop-oriented
⦁ Package repository

Alpine Linux
is perfect
for containers

It is small and secure. All necessary
tools are available out of the box
or in packages.

Alpine containers with Java work.

Alpine Linux Port

Port the JDK to Alpine
Linux, and to other Linux
distributions that use musl
as their primary C library,
on both the x64 and
AArch64 architectures.

— JEP 386

JDK 16
⦁ JEP 386: Alpine Linux Port
⦁ openjdk.java.net/jeps/386

http://openjdk.java.net/jeps/386

Project Portola
⦁ openjdk.java.net/projects/portola
⦁ Port of the JDK to the Alpine Linux distribution,

and in particular the musl C library
⦁ Started by Mikael Vidstedt from Oracle in 2017
⦁ Used for Alpine musl containers with JDK 9+
⦁ Integrated into mainline in 2020 with JEP 386

─ Delivered by BellSoft
─ JDK 16

https://openjdk.java.net/projects/portola/

Project Portola. Build
⦁ A new port

─ Determine and distinguish C libraries
─ Conditional compilation

⦁ Native build
⦁ Cross-toolchain for glibc environment
⦁ Implement missing functions or make them compatible
⦁ Testing environment
⦁ Documentation

─ https://github.com/openjdk/jdk/blob/master/doc/building.md#building-for-musl

https://github.com/openjdk/jdk/blob/master/doc/building.md#building-for-musl

JNI. Build
$ gcc -std=c99 -I"$JAVA_HOME/include" -I"$JAVA_HOME/include/linux" -shared -o
libhelloworld.so -fPIC JNIHelloWorld.c

16K libhelloworld.so

$ java -Djava.library.path=. JNIHelloWorld

Hello world!

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine-musl:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

JNI. Cross Build
$ x86_64-linux-musl-cross/bin/x86_64-linux-musl-gcc -std=c99 -I"$JAVA_HOME/include"
-I"$JAVA_HOME/include/linux" -shared -o libhelloworld.so -fPIC JNIHelloWorld.c

7.7K libhelloworld.so

$ java -Djava.library.path=. JNIHelloWorld

Exception in thread "main" java.lang.UnsatisfiedLinkError: /home/tp/jni/libhelloworld.so:
/usr/lib/x86_64-linux-gnu/libc.so: invalid ELF header

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine-musl:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

Project Portola. Issues
⦁ LD_PRELOAD is not the same on different platforms

─ Glibc resolves libs not like musl (or AIX libc)
─ jpackage and other launchers were fixed to still use proper JDK libs

⦁ Alpine used to have PaX/grsecurity in kernel by default
─ Attempt to execute JIT code shut down the JVM
─ Added Memory protection check on startup

⦁ JDWP (Debug) sometimes had troubles with IPv4/IPv6 config
─ Initialization was made more careful

⦁ Debugging (gdb)
─ There’s SIGSYNCCALL during JVM init
─ Debug with -XX:-MaxFDLimit

Project Portola. Issues
⦁ Running AWT in headless mode

─ You may want to render images
─ Install freetype and fonts

⦁ Fontmanager
─ For all real cases load awt lib before fontmanager

⦁ NMT
─ Use latest Alpine (3.11+)

⦁ NUMA detection requires recent libnuma
─ apk add numactl

Project Portola. Issues
⦁ lsof does not support ‘-p’ option on busybox

─ Expect reduced output

⦁ Musl does not execute scripts that does
not have a proper shebang
─ Write proper # headers in *.sh
─ https://www.openwall.com/lists/musl/2020/02/13/4

⦁ Serviceability agent (private API) doesn’t work

Shebang in scripts
$ docker run -it bellsoft/liberica-openjdk-alpine-musl:15 ash

-rwxr-xr-x run.sh

echo "hello"

jshell> Runtime.getRuntime().exec("./run.sh")
| Exception java.io.IOException: Cannot run program "./run.sh": error=8, Exec format error

-rwxr-xr-x run.sh

#!/bin/sh
echo "hello"

jshell> Runtime.getRuntime().exec("./run.sh")
$1 ==> Process[pid=262, exitValue=0]

Variables with dots
$ docker run -it -e "hibernate.format_sql=true" bellsoft/liberica-openjdk-alpine:15 ash

set | grep hibernate

hibernate

$ docker run -it -e "hibernate.format_sql=true" bellsoft/liberica-openjdk-debian:15 bash

set | grep hibernate

<empty>

$ docker run -it -e "hibernate_format_sql=true" bellsoft/liberica-openjdk-alpine-musl:15 ash

set | grep hibernate

hibernate_format_sql='true'

Serviceability Agent
$ docker run -it bellsoft/liberica-openjdk-alpine:8 jstack -h
...
Options:

-F to force a thread dump. Use when jstack <pid> does not respond (process is hung)
-m to print both java and native frames (mixed mode)
-l long listing. Prints additional information about locks
-h or -help to print this help message

$ docker run -it bellsoft/liberica-openjdk-alpine-musl:8 jstack -h
...
Options:

-l long listing. Prints additional information about locks
-h or -help to print this help message

$ docker run -it bellsoft/liberica-openjdk-debian:11 jstack -h
...
Options:

-l long listing. Prints additional information about locks
-h or -help to print this help message

Alpine Linux
port
in upstream

Unifies platform support across community
and distributions. Helps maintenance and
port development for perfect small
containers. Liberica JDK Alpine musl
containers are tested and TCK-verified.

Different uses are possible.

She can be seen in various forms

Make More
Users Happy

We plan to stay
on Java 8.

~50% of users

Portola Expansion
⦁ JDK 11 LTS

─ Not in mainline (yet)
─ Historical downports in Liberica 9+
─ Liberica 11u on Dockerhub

⦁ JDK 8 LTS
─ Liberica 8u on Dockerhub

⦁ AArch64
⦁ OpenWRT

https://hub.docker.com/r/bellsoft/liberica-openjdk-alpine-musl
https://hub.docker.com/r/bellsoft/liberica-openjdk-alpine-musl

⦁ Acquired ex-Oracle Linux engineering best talent
⦁ Fixed some kernel and libc bugs as part of Liberica JDK support
⦁ OSS Contributions

─ MUSL support for LTP project, ~100 patches
─ MUSL support for OpenJDK
─ MUSL support for GraalVM

Linux @bellsoftware

...is the operating
system optimized for
Java deployment,
emphasizing high
performance, security,
small size, and
flexibility.

— BellSoft

Alpaca Linux

Top 4 features of Alpaca Linux

Optimized performance

Alpaca’s features include tuned kernel, optimized libc, and
optimized malloc options to boost the performance of your
applications without sacrificing stability.

Liberica Lite and Liberica NIK

Liberica Lite, the optimized version of Liberica JDK, enhances the
performance and minimizes memory footprint. Liberica NIK
allows creating the native images that benefit even more with
Alpaca Linux as the foundation.

Enhanced security

The lack of extra components means it is harder to break, and
timely, frequent updates reliably remove the vulnerabilities. As a
bonus, an additional security hardening is provided by userspace
compilation options.

Miniature size

With its 2.9 Mb base image size, Alpaca offers the smallest
performant docker images, JDK docker images, and native
images, making the deployment faster and memory footprint
lesser.

Support cycle

Alpine 3.14

 Alpaca 3.15 LTS support

Alpaca 3.14
Alpine 3.15

Alpine 3.16
Alpaca 3.16

Alpine 3.17
Alpaca 3.17

Alpine 3.18
Alpaca 3.18

Alpine 3.19
 Alpaca 3.19 LTS support

Alpaca LTS aligned with Linux Kernel LTS
- 5.15 Kernel LTS for Alpaca 3.15 LTS

Alpaca LTS supported for 6 years
- longer than 2 years max for Alpine
- 2 years overlap with the next LTS

Alpine 3.20
Alpaca 3.20

t

⦁ BellSoft Security Advisory (being built)
─ Full open listings of addressed CVEs and affected components
─ OpenJDK/Liberica JDK security advisory
─ Tooling and scanning to support the efforts

⦁ Internal CVE DB checking against MITRE/NIST
⦁ CVE checker
⦁ Static code and binary analysis tools

Alpaca. Addressing CVEs

Alpaca. Optimized musl performance
Tests: basic functional string tests with 1 million iterations.
Results are shown in relative avg speed, 1K/ns.
Machine: bare-metal, Intel Core i5-6600 CPU 3.30GHz.

Higher is better:
GLIBC: Debian 10.11 2.28
MUSL-perf: Alpaca musl-1.2.2_p-r1803
MUSL: Alpaca musl-1.2.2-r3

Alpaca. Extra mallocs performance
⦁ alloc-test: simulates intensive allocation

workloads with a Pareto distribution.
⦁ cache-scratch: introduced with the Hoard

allocator to test for passive-false sharing of
cache lines.

⦁ espresso: a programmable logic array
analyzer in the context of cache aware memory
allocation.

Results in relative
speed 1/s,
higher is better

Alpaca. Phoronix benchmarks
Higher is better

Lower is better, by 7% geomean

- Up to 50% lower RAM consumption

Petclinic RAM footprint & latency

- NIK vs JDK including ramp-up
- 25x lower latency at 99 pct
- 46x lower latency at 99.9 pct

Low-end HW, underutilized CPU, mixed scenario
Low load (133 users, 54 RPS), delayed load start

-

Cheat Sheet

Conclusions

⦁ Container images
─ Many ways to deliver
─ Many ways to build
─ Small base images help in production

⦁ Alpine & musl
─ Smallest OS image with tools
─ Peculiarities

⦁ OpenJDK port to musl
─ Officially in OpenJDK
─ Good base images with JDK

⦁ Alpaca, Liberica Lite, Liberica NIK
─ Make it all even more secure and performant

Thank you for
your attention!

https://bell-sw.com
dmitry.chuyko@bell-sw.com

@dchuyko

https://bell-sw.com/?fbclid=IwAR1bge4W0YxLa_5Br-q2yHDX0A9GX8Ko0hQcw4BvjmQX9l4gtlJG01E3VT4
https://twitter.com/dchuyko

