
Introduction to JBoss Seam

Christian Bauer
christian@hibernate.org

Road Map

• The standards: JSF and EJB 3.0

• A Java EE web application example

• Analyzing the application

• Improving the application with Seam

• Seam feature highlights

2

JSF: The Big Picture

JavaServer Faces standardizes an event-driven
framework for web applications:

• Extensible component model for UI widgets
• "Managed beans" for application logic
• Expression language for value and action

listener binding
• Standardized event processing
• Navigation rules for coordination of page flow

3

EJB 3.0: The Big Picture

EJB 3.0 standardizes a programming model for
transactional components:

- POJO-based - any class is an EJB component
- Stateless, stateful, and message-driven components
- Configuration by exception, metadata in annotations

(preferred) or XML
- Dependency injection of managed components and

other resources
- Declarative handling of cross-cutting concerns, e.g.

transaction demarcation and security requirements
- Full object/relational mapping with the new Java

Persistence API (JPA)

4

Road Map

• The standards: JSF and EJB 3.0

• A Java EE web application example

• Analyzing the application

• Improving the application with Seam

• Seam feature highlights

5

A table in a SQL DBMS:

Our web application allows searching for items and
modifying their values...

Let’s suppose we have some data...

create table ITEM (
 ID bigint not null primary key,
 NAME varchar(100) not null unique,
 DESCRIPTION varchar(1000),
 PRICE decimal(10,2) not null
)

6

Using JPA annotations:

If we put @Id on a field, no getter and setter
methods are required, add them dependent on
value mutability

Map the table to an entity class

@Entity
public class Item {

 @Id @GeneratedValue
 private Long id;
 private String name;
 private String description;
 private BigDecimal price;

 // Constructor
 // Optional: Getter/setter method pairs
}

Surrogate key
identifier
attribute

7

JSF widgets are bound to a backing bean with
value- and action-binding expressions, referencing
the backing bean by name:

The search page

<h:form>
 Enter item identifier: <h:inputText value="#{itemEditor.id}"/>
 <h:commandButton value="Search" action="#{itemEditor.doGet}"/>
</h:form>

A JSF control A JSF-EL method binding

A JSF-EL value binding

8

The rendered edit page

9

JSF supports validation and conversion, validation
errors render messages:

The edit page source

<h:form>
 Editing Item: <h:outputText value="#{itemEditor.id}/>
 Name: <h:inputText value="#{itemEditor.title}">
 <f:validateLength maximum="255"/>
 </h:inputText>
 Description: <h:inputText value="#{itemEditor.description}">
 <f:validateLength maximum="4000"/>
 </h:inputText>
 Initial Price (USD):
 <h:inputText value="#{itemEditor.price}"/>
 <f:convertNumber type="currency"
 pattern="$### ###.## USD"/>
 </h:inputText>

 <h:messages/>
 <h:commandButton value="Save" action="#{itemEditor.doSave}"/>
</h:form>

JSF Validator

JSF Converter

10

All method calls are wrapped in a system
transaction, the persistence context is scoped to
that transaction automatically

Should we use a SLSB?

@Stateless
public class EditItemBean implements EditItem {

 @PersistenceContext
 EntityManager em;

 public Item find(Long id) {
 return em.find(Item.class, id);
 }

 public Item save(Item item) {
 return em.merge(item);
 }
}

Container will
prepare a pool of

instances

Container will
inject the

EntityManager at
call time

11

And a JSF backing bean?

public class ItemEditor {

 private Long id;
 private Item item;
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 public String getTitle() { return item.getTitle(); }
 public void setTitle(String title) { item.setTitle(title); }
 // etc..

 @EJB EditItem editItemEJB;

 public String doGet() {
 item = editItemEJB.find(id);
 item == null ? return "notFound" : "success";
 }
 public String doSave() {
 item = editItemEJB.save(item);
 return "success";
 }
}

Action method outcome

Value binding
methods

Action binding
methods

12

When an instance of itemEditor needs to be
resolved, it either will be in the session context or
a new instance is created and held in the session
context

Hence, itemEditor is a contextual variable with a
value managed by JSF

Declare the bean in faces-config.xml

<faces-config>
 <managed-bean>
 <managed-bean-name>itemEditor</managed-bean-name>
 <managed-bean-class>caveatemptor.ItemEditor</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</faces-config>

13

Declare navigation rules

<faces-config>
 <managed-bean>...</managed-bean>

 <navigation-rule>
 <from-view-id>/getItem.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/editItem.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

 <navigation-rule>
 <from-view-id>/editItem.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/getItem.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

</faces-config>

Navigation rules map
logical "outcomes" to

view URLs

14

Road Map

• The standards: JSF and EJB 3.0

• A Java EE web application example

• Analyzing the application

• Improving the application with Seam

• Seam feature highlights

15

Much simpler code

• Fewer artifacts: No DTOs required

• Less noise: No Struts/EJB 2.x boilerplate code

• More transparent: No direct calls to
HttpSession or HttpRequest

• Much simpler ORM: Even compared to
Hibernate API!

• Finer grained components: Clean MVC

16

More powerful for complex problems

• JSF is amazingly flexible and extensible

• Custom sets of UI widgets are available, even
with AJAX support

• EJB 3.0 supports interceptors for "AOP lite"

• Powerful object/relational mapping, far beyond
EJB 2.x CMP entity beans

• All components (except the views) are easily
testable with TestNG or JUnit

17

The JSF backing bean is just noise

• The component with the most lines of code

• Brittle, every change of view or the application
logic requires change of backing bean code

• Looks like it decouples layers but in fact the
layers are more coupled together than they
should be

18

No multi-window support

1. Open the search view in one browser window,
look up an item and start editing it

2. Open the search view in a second browser
window, the item you look up will overwrite the
state in the session

3. If you now save the item in the first window,
you are actually saving the item you loaded in
the second window - without realizing it!

Fixing this simple bug (today this is considered a
bug) is a major architectural change!

19

Application leaks memory

1. Open the search view in one browser window,
look up an item and start editing it

2. Save your changes - back on the search page

The ItemEditor instance in the session variable
itemEditor will only be cleaned up when the
session is destroyed

Now imagine an application with many session-
scoped backing beans and many forms...
extremely difficult to fix category of bugs

20

Flow is weakly defined

• If you want to know where the click on "Find"
will take you, how many files do you have to
look at?

• No tight control over user navigation, totally ad-
hoc (back button, bookmarking)

• How do you tie this flow into the overall long-
running business process? Maybe editing an
item was just a small task in a larger review
process...

21

Too much and bad XML metadata

• The faces-config.xml is clunky - Sun still doesn't
know how to use XML attributes

• This metadata is much better defined in
annotations - after all, how often does the role
of a component change without any code
change?

22

Road Map

• The standards: JSF and EJB 3.0

• A Java EE web application example

• Analyzing the application

• Improving the application with Seam

• Seam feature highlights

23

• Unify EJB and JSF component models

• Deprecate so-called stateless architecture

• Integrate BPM - workflow and business process
management for the masses

• Decouple technology from the execution
environment - rely on standard runtimes

• Enable richer user experience - AJAX, multi-
window web applications

JBoss Seam Goals

24

Minor change to the edit page:

Adding Seam to the application

<h:form>
 Editing Item: <h:outputText value="#{itemEditor.id}/>
 Title: <h:inputText value="#{itemEditor.item.title}">
 <f:validateLength maximum="255"/>
 </h:inputText>
 Description: <h:inputText value="#{itemEditor.item.description}">
 <f:validateLength maximum="4000"/>
 </h:inputText>
 Price: <h:inputText value="#{itemEditor.item.price}"/>
 <f:convertNumber type="currency"
 pattern="$### ###.## USD"/>
 </h:inputText>

 <h:messages/>

 <h:commandButton value="Save" action="#{itemEditor.doSave}"/>
</h:form>

Now referencing
the entity

properties!

25

Our first Seam component!

@Name("itemEditor")
@Stateful
public class EditItemBean implements EditItem {

 @PersistenceContext EntityManager em;

 private Long id;
 private Item item;
 // Getter and setter pairs

 @Begin
 public void doGet(Long id) {
 item = em.find(Item.class, id);
 item == null ? return "notFound" : "success";
 }

 @End @Destroy @Remove
 public void doSave(Item item) {
 item = em.merge(item);
 return "success";
 }
}

Seam component name
is the contextual

variable name

Component is stateful -
value bindings to

component properties

Begin a Conversation - hold
variables across requests

End a Conversation - destroy
variables when this method

returns

26

After adding Seam

• The JSF backing bean is gone, the Seam
component is now referenced with itemEditor

• An instance will be created by Seam and held
automatically in the new logical conversation
context, either for a single or several requests

• The conversation is promoted when a method
with a @Begin annotation is called and demoted
and destroyed when a method with an @End
annotation returns

• Conversational state is handled properly,
application does not leak memory into the
HttpSession and now works in several browser
windows (parallel conversations)

27

The Seam context model

• EVENT
• PAGE
• CONVERSATION
• SESSION
• BUSINESS PROCESS
• APPLICATION

The highlighted “logical” contexts are demarcated
by application code or metadata

28

Hierarchical stateful contexts

SESSION

APPLICATION

SESSION

CONVERSATION CONVERSATION

EVENT EVENT

INVOKE

APPLICATION

RENDER

RESPONSE

PAGE

INVOKE

APPLICATION

EVENT

BUSINESS PROCESS

29

State management

• How is state stored between requests?
- different strategies for each context

• Conversation context
- Segmented HttpSession + conversation timeout
- org.jboss.seam.core.init.conversationTimeout

• Page context
- stored in JSF ViewRoot (component tree) of the page
- might be serialized to client if JSF is configured for

client-side state saving, otherwise in HttpSession

• Business Process context
- must be persistent in the database, handled by jBPM

30

Seam component examples

@Entity
@Name("item")
public class Item { ... }

@Stateful
@Name("itemEditor")
public class ItemEditorBean implements ItemEditor { ... }

@Name("itemEditor")
@Scope(ScopeType.CONVERSATION)
public class ItemEditor { ... }

@Entity
@Name("user")
@Roles({
 @Role(name = "currentUser", scope = ScopeType.SESSION)
})
public class User { ... }

31

Dependency Injection

• Traditional dependency injection is broken for
stateful applications

• A contextual variable can be written to, as well as read!
• Its value changes over time
• A component in a wider scope must be able to have a

reference to a component in a narrower scope

• Dependency injection was designed with J2EE-
style stateless services in mind – just look at
that word “dependency”

• it is usually implemented in a static, unidirectional, and
non-contextual way

• simple replacement for factories and JNDI lookups

32

"Bijection"

• Looking for a better name!

• Stateful applications need wiring that is:
- dynamic
- contextual
- bidirectional

• Don't think of this in terms of "dependency"

• Think about this as aliasing a contextual
variable into the namespace of the component

33

The @In and @Out annotations trigger automatic
wiring at component call-time:

What does it look like?

@Name("changePassword")
public class ChangePasswordAction {

 @PersistenceContext
 private EntityManager em;

 @In
 @Out
 private User currentUser;

 public String changePassword() {
 currentUser = em.merge(currentUser);
 }
}

Take the value of the field and
set it on the contextual

variable "currentUser" every
time this component is

invoked - the context is the
default or defined context for
the "currentUser" component

Inject the value of the
contextual variable named

"currentUser" every time this
component is invoked - search

all contexts hierarchically

34

Pageflow

• Two models for conversational pageflow

- The stateless model: JSF navigation rules, either in
faces-config.xml or in pages.xml
• ad hoc navigation (app handles back button)
• actions tied to UI widgets

- The stateful model: jBPM pageflow
• no ad hoc navigation (back button usually bypassed)
• actions tied to UI widgets or called directly from

pageflow transitions

• Simple applications need the stateless model,
some applications need both models

35

• Not the same as a conversation
- long-running (persistent)
- multi-user
- (The lifespan of a business process instance is longer

than the process definition!)

• A conversation that is significant in terms of
the overarching business process is a task
- use @BeginTask to begin a conversation that

completes work in the business process
• that means a task is a special kind of conversation!

What about business process?

36

The Persistence Context

• Java Persistence/EJB3 has a Persistence Context
- think "a HashMap of all objects I loaded and stored

through an EntityManager"
- guarantees integrity and avoids data aliasing

problems: at most one in-memory object for each
database row while the PC is active

- is also a natural first-level cache
- can do dirty checking of objects and write SQL as late

as possible (automatic or manual flushing)

• EJB3 Persistence Contexts have a flexible scope
- default: scope is same as system transaction (JTA)
- optional: extended PC bound to stateful session bean

37

Transaction-scoped or extended PC?

• A transaction-scoped persistence context has
problems if you re-use detached objects
- LazyInitializationException if you navigate unloaded

associations or iterate through unloaded collections
- NonUniqueObjectException if you reattach detached

instances into a new PC that already contains an
instance with the same identifier (merging helps)

- Less opportunity for caching (traditional workaround:
enable the Hibernate second-level cache...)

• An extended persistence context of a SFSB is
- not available during view rendering (LIE again)
- very complicated rules when a PC is propagated into

bean calls, depending on the system transaction

38

Let Seam handle the persistence context scope:

@Name("itemEditor")
@Stateful
public class ItemEditorBean implements ItemEditor {

 @In
 private EntityManager em;

 @Begin(flushMode=FlushModeType.MANUAL)
 public Item getItem(Long itemId) {
 return em.find(Item.class, itemId);
 }

 public void processItem(Item item) {
 item.getCategories().iterator().next();
 }

 @End public void confirm() { em.flush(); }
}

Seam: Conversation-scoped PC

The "item" remains persistent
throughout the conversation

Seam looks up
"em" for you

39

Seam transaction management

• When using Seam-managed persistence
contexts, it makes more sense to demarcate
transactions according to the lifecycle of the
web request
- We want as few transactions as possible, but we

always want a transaction active
- We want to avoid displaying success messages to the

user before the transaction has completed

• Solution: one transaction for read/write
operations during the first part of the request,
up to and including INVOKE APPLICATION, a
second transaction for read-only operations
during the RENDER RESPONSE phase

40

Seam manages PC and TX

PERSISTENCE CONTEXT

CONVERSATION

EVENT EVENT

RENDER

RESPONSE

INVOKE

APPLICATION

UPDATE

MODEL

PROCESS

VALIDATIONS

RESTORE

VIEW

APPLY

REQUEST

VALUES

SYSTEM TRANSACTION

FLUSH

41

Model-based constraints

• Validation belongs in the user interface
- or does it?

• Most "validations" reflect integrity rules that
also appear in the database
- in fact, most business rules have integrity rules that

should be represented with some database constraint

• If we look closer, the same constraints appear in
multiple places: the presentation layer, the
persistence layer, the database schema

• It would be better to declare these constraints
in just one place: the data model definition

42

Hibernate Validator annotations

@Entity
public class Item {

 @Id @GeneratedValue
 private Long id;

 @org.hibernate.validator.Length(min=3, max=100)
 @org.hibernate.validator.Pattern(regex="[a-zA-z0-9]")
 private String title;

 @org.hibernate.validator.Length(
 min=3,
 max=1000,
 msg = "The description must be between 3 and 1000 characters!"
)
 private String description;

 private BigDecimal price;

 // Constructor
 // Optional: Getter/setter method pairs
}

Could also
reference a

message
bundle key

43

Hibernate Validator supports...

• Many built-in validators
- Max, Min, Length, Range, Size, Email, Future, Past,

Pattern, Email, CreditCard, ...
- Easy to write custom validators

• Validation and message/error display with Seam
UI components for JSF

• Validation can be triggered programmatically on
objects, throws InvalidStateException with an
array of invalid properties

• Works with every JPA provider, if used with
Hibernate it generates SQL DDL constraints you
can use in your database schema

44

Road Map

• The standards: JSF and EJB 3.0

• A Java EE web application example

• Analyzing the application

• Improving the application with Seam

• Seam feature highlights

45

Seam Security: Authorization

<page view-id="/comment.xhtml">
 <restrict/>
 ...
</page>

Permission name: /comment.xhtml
Permission action: view

@Entity
class name BlogEntry {
 @PrePersist @Restrict
 public void prePersist() {}
 ...

@Name("blog")
class name BlogAction {
 @Begin @Restrict
 public void createComment() {
 ...

Identity.instance().checkRestriction(
 "#{s:hasPermission('friendComment', 'create', friends)}"
);

<s:span rendered="#{s:hasPermission('blog','createComment', null)}">
 <s:link view="/comment.seam" value="Add Comment" propagation="none"/>
</s:span>

Permission name: pgk.BlogEntry
Permission action: insert

Permission name: blog
Permission action: createComment

Added to rules
working memory

46

You can also register listeners in components.xml
or listen to any of the Seam built-in events

Seam observer/observable pattern

@Name("hotelBooking")
class HotelBookingAction {

 @End
 public String confirm() {
 em.persist(booking);
 Events.instance().raiseEvent("bookingConfirmed");
 return "confirmed";
 }

@Name("bookingList")
class BookingListAction
 @Factory("bookings")
 @Observer("bookingConfirmed")
 public void refreshBookings() {
 bookings = em.createQuery...
 }

Events can carry a
payload but it's easier

to outject/inject values

47

Starting asynchronous procedures

@Local
public class PaymentProcessor {

 @Asynchronous
 public void schedulePayment(@Expiration Date when,
 @IntervalDuration long interval,
 Payment payment);
}

Annotate the
interface

@Name("payAction")
public class PayAction {
 @In PaymentProcessor paymentProcessor;
 @In Payment newPayment;

 public void schedule() {
 paymentProcessor.schedulePayment(
 payment.getPaymentDate(),
 payment.getFrequency().interval(),
 payment
);
)
}

Processing is
transparent to

controller!

48

Remember: Only the BUSINESS PROCESS context
is propagated into asynchronous methods, new
EVENT and CONVERSATION context

@Name("hotelBooking")
class HotelBookingAction {

 @End
 public String confirm() {
 em.persist(booking);
 Event.instance().raiseAsynchronousEvent("bookingConfirmed");

 // Date when = new Date(...);
 // long interval = ...;
 // Event.instance().raiseTimedEvent(
 // "bookingConfirmed", when, interval
 //);
 return "confirmed";
 }

Firing asynchronous Seam events

We will later poll the
observers for their state

49

Use the Seam helper components:

Publish a JMS object message

@In TopicPublisher stockTickerPublisher;
@In TopicSession topicSession;

public void publish(StockPrice price) {
 try {
 topicPublisher.publish(topicSession.createObjectMessage(price));
 } catch (Exception ex) {
 throw new RuntimeException(ex);
 }
}

50

Use the Seam helper components:

To receive JMS messages, write a message-driven
EJB and turn it into a Seam component, or
subscribe with JavaScript and Seam Remoting

Working with JMS queues

@In QueueSender paymentQueueSender;
@In QueueSession queueSession;

public void publish(Payment payment) {
 try {
 paymentQueueSender.send(
 queueSession.createObjectMessage(payment)
);
 } catch (Exception ex) { throw new RuntimeException(ex); }
}

51

Configure the Seam component:

Write a Facelets template:

Send the email by rendering the template:

Supports HTML, attachments, etc...

<mail:mail-session host="my.smarthost.com" port="25"/>

Sending e-mails with Seam

<m:message xmlns:m="http://jboss.com/products/seam/mail">
 <m:from name="Seam" address="do-not-reply@jboss.com" />
 <m:to name="#{person.namae}">#{person.address}</m:to>
 <m:subject>Plain text e-mail sent by Seam</m:subject>
 <m:body type="plain">Dear #{person.firstname},
This is a simple, plain text, e-mail.
 </m:body>
</m:message>

Renderer.instance().render("/mailTemplate.xhtml");

Use expressions to
access contextual

variables!

52

Just write a Facelets page and open it:
<p:document xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:p="http://jboss.com/products/seam/pdf"
 title="Example PDF" keywords="mykeyword"
 subject="seam" author="Seam Team"
 creator="Seam PDF example app">

 <f:facet name="header">
 <p:font size="12">
 <p:footer>My Footer [<p:pageNumber />]</p:footer>
 </p:font>
 </f:facet>
 <p:paragraph alignment="justify">
 You bought #{shoppingCart.size} items:
 </p:paragraph>
 <p:image value="/jboss.jpg" />
...

Rendering PDFs with Seam/iText

Use expressions to
access contextual

variables!

53

Seam Remoting for JavaScript

• Call Seam components from JavaScript

• JavaScript proxies generated dynamically at
runtime, and provided to the client by a servlet

• Method call and parameters are transmitted
asynchronously via XMLHttpRequest

• Method return value is passed to a callback
function

54

Make a method "remotable":

Call it from JavaScript, passing in your handler:

@Local
public interface HelloLocal {
 @WebRemote public String sayHello(String name);
}

Calling a remote method with JS

Implementation is
nothing special,
returns a String

<script type="text/javascript"
 src="seam/resource/remoting/resource/remote.js"></script>
<script type="text/javascript"
 src="seam/resource/remoting/interface.js?helloAction"></script>

<script type="text/javascript">
 function sayHello() {
 var name = prompt("What is your name?");
 Seam.Component.getInstance("helloAction").sayHello(name, sayHelloCallback);
 }
 function sayHelloCallback(result) { alert(result); }
</script>

<button onclick="javascript:sayHello()">Say Hello</button>

Imports the
JavaScript

"interface" via the
Seam resources

servlet

55

• Currently in beta, GA in Summer 2007
• Seam components can be Webservice endpoints
• Seam components can be written in Groovy
• Seam core is now independent of JSF
• Experimental support for GWT
• Integration of Hibernate Search
• Extensions to the unified EL
• Better async processing (Quartz integration)
• Decoupled transaction layer from JTA
• Redesign of JSF components (CDK, Exadel)
• ... much more

New features in Seam 2.0

56

Summary

• Seam has way too many features :)
• More features:

- Many useful JSF components
- Page fragment caching
- i18n and message bundle handling
- Switchable UI theme architecture
- JBoss Rules integration for business logic handling
- Wiki text parser and renderer
- Unit testing support with mock infrastructure
- Spring integration for migration to stateful apps

• Try the example applications (> 25!) in Seam

57

